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SUMMARY OF PAPER 

 

 Leading (expected future) effects are as important as 

lagged effects for determining expected economic paths. 

 

 Commonly used VAR models explicitly include only lagged 

effects, maybe only indirectly via survey variables. 

 

 LREMs with exogenous variables are VARX models with 

added expected-future terms in (usually) endogenous and 

(sometimes) exogenous variables. 

 

 RE modelling has been the only systematic L & NL method 

for modelling both lagged and leading effects. 

 

 RE models (now mostly called DSGEMs) have been largely 

motivated by economic theory, which has disadvantages: 

 

1. Need more demanding MLE or Bayesian NL estimation in 

terms of NL restricted "deep" parameters. 
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2. Have zero restrictions on coefficients that can put 

models in unsatisfactory "corners" of model spaces. 

 

3. If necessary (poor fit or predictions), have narrow 

room for modification except with more theorizing. 

 

 Paper derives indirect linear least-squares estimates 

(ILLSE) of structural and "RES" coefficients of a LREM, 

without any restrictions on coefficients, only one 

standard normalization of disturbance covariances. 

 

 Resulting "purely data based" ILLSE model can be 

compared for in-sample fit or out-of-sample prediction 

with a commonly estimated LREM with NL restrictions and 

modified in its direction or vice versa. 

 

 ILLSE RES equation can be used to make Lucas-consistent 

econometric policy evaluations. 

 

 Basically, LREM I/E extends LSEM I/E; e.g., slopes of 

D&S curves shifted by different exogenous variables.     
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1. INTRODUCTION. 

[1] Linear rational expectation models (LREMs): 

 

 LREMs are standard multivariate structural macroeconomic 
models that extend linear simultaneous equations models 

(LSEMs) by adding terms in expected-future variables. 

 

 LREMs are now commonly called dynamic stochastic general 
equilibrium models (DSGEMs) to emphasize generality and 

nonlinearity in variables; here we call them LREMs because 

we only consider models linear in variables. 

 

 Goal of paper: extend identification of LSEMs with 

exogenous variables to LREMs. 

 

 "With" means (i) a model has exogenous variables and (ii) 
they are the key to identification without using any 

theoretical restrictions except one matrix normalization, 

so that the identification is "purely data based". 
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[2] LREM has 4 equations: 

 

(1) Structural/endogenous: 2 t t 1A E y  + 1 tA y + 0 t 1A y   = 0 tB  + 0 tC z , 

 

(2) RES/endogenous: ty  = 1 t 1y   + 0 t   + i t t ii 0
E z




 , 

 

(3) Structural/RF/exogenous: tz  = 1 t 1D z   + 2 t 2D z   + t , 

 

(4) RF/endogenous:  ty  = 1 t 1y   + 0 t   + 0 tz  + 1 t 1z  , 

 

 ty  = n 1  observed endogenous variables, 

 t  = n 1  unobserved disturbances ~ IID( nx10 , nI ), 

 tz  = m 1  observed exogenous variables, m  n, 

 t  = m 1  unobserved disturbances ~ IID( nx10 ,  ). 

 

 Eqs. (1) & (3) are specified. 

 Solving eq. (1) => eq. (2). 

 Combining eqs. (2) & (3) => (4). 

 Combining eqs. (3) & (4) => RF VAR of all variables. 
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[3] 4 forward-solution functions from bottom-to-top: 

 

 5 levels of quantities: 
 

1. 1 =vector of "deep structural parameters". 

2. 2 ={
2

2 i 0{A }  , 0B , 0C }= matrices of "structural coefficients". 

3. 3 ={ 1 , 0 , i i 0{ }

 }= matrices of "RES coefficients". 

4. 4 ={ 1 , 0 ,
1

i i 0{ }  ,
2

i i 1{D }  }= matrices of "RF coefficients". 

5. 5 =vector of "data moments". 

 

 4 forward-solution functions, 
 

  1  => 2 = 1 1f( )  => 3 = 2 2f( )  => 4 = 3 3f( )  => 5 = 4 4f( ) , or 

 

  i 1  = i if( ) , i = 1,…,4. 

 

 10 composite forward-solution functions, 
 

  j  = ji ig ( )   j 1 i if ( f( ) )  , for 1, ,4 = i < j = 2, ,5. 
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[4] 4 inverse-identification functions from top-to-bottom: 

 

 4 inverse-identification functions, 
 

  4  = 
1

4 5f ( )
   => 3  = 

1
3 4f ( )
   => 2  = 

1
2 3f ( )
   => 1  = 

1
1 2f ( )
  , or 

 

  i 1  = 
1

i 1 if ( )

  , i = 5,…,2. 

 

 10 composite inverse-identification" functions: 
 

  For 1, ,4 = i < j = 2, ,5: 

 

  i  = 
1

ij jg ( )
    

1 1
i j 1 jf ( f ( ) )
 

  ; 

 
1

ij jg ( )
   exists because j  = ji ig ( ) ; 

 

i  is identified from j  if & only if 
1

ij jg ( )
   is unique. 
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 Paper considers only: 
 

Identification 1: 2  = 
1

2 3f ( )
   of structural from RES coeffs. 

 

Identification 2: 3  = 
1

3 4f ( )
   of RES from RF coefficients. 

 

 Because the goal is to obtain general results and 1  = 
1

1 2f ( )
   depends on a particular LREM, it's not considered. 

 

 Because 4  = 
1

4 5f ( )
   just says that linear least-squares 

estimation is consistent, it's also not considered. 

 

 Combined identification 1-2 of 2  = 
1
24 4g ( )
   identifies 

structural coefficients from RF coefficients via RES 

coefficients. 

 

 Goal of paper: derive equations for evaluating 2  = 
1

2 3f ( )
   

and 3  = 
1

3 4f ( )
   and prove the inverse functions are unique 

under assumptions (A.1)-(A.6) on structural coefficients.   
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[5] Linear versus nonlinear identification: 

 

 General discussion of LREM identification started about 

10 years ago: Iskrev (2009), Komunjer & Ng (2011), Qu & 

Tkachenko  (2012, 2017), Kociecki & Kolasa (2018, 2020), 

Al-Sadoon & Zwiernik (2020), ... 

 

 All emphasized nonlinearity of LREM identification. 
 

 However, only identifications 1  = 
1

1 2f ( )
   and 4  = 

1
4 5f ( )
   

might be nonlinear, most likely only 1  = 
1

1 2f ( )
  . 

 

 Identification 4  = 
1

4 5f ( )
   might be nonlinear only due to 

data complications such as aliasing (Hansen & Sargent, 

1982) due to mixed frequencies or subsampling (Anderson et 

al., 2012; Zadrozny, 2016; Tank et al., 2019). 

 

 Present identifications 1-2 are linear. 
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[6] Practical implications of identifications 1-2: 

 

 Identification 1 as estimation (down from consistently 

estimated data moments) produces purely-data-based 

(without theoretical restrictions) estimated structural 

coefficients, so that it gives a purely-data-based idea of 

the coefficients' signs and distances from zero. 

 

 Identification 2 as estimation produces purely-data-based 
RES equations that can predict consistently with Lucas's 

(1976) critique of econometric policy evaluation. 

 

 RES-equation predictions are consistent with Lucas's 

critique because RES coefficients { 1 , 0 , i i 0{ }

 } are 

independent of paths of current and expected-future 

exogenous variables t t i i 0{E z }


  . 
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2. IDENTIFICATION 1. 
 

[1] Cross equations of rational expectations (CERRE): 

 

 In forward solution, for given structural coefficients 

{
2

2 i 0{A }  , 0B , 0C }, RES coefficients { 1 , 0 , i i 0{ }

 } satisfy 

 

(5)     
2

2 1A   + 1 1A   + 0A  = nxn0 , 

 

(6)     2 1 1 0(A A )    = 0B , 

 

(7)     2 1 1 0(A A )    = 0C , 

 

(8)     2 1 1 i(A A )    + 2 i 1A   = nxn0 , for i = 1,2,3,…, 

 

and inversely in identification. 

 

 2
1  in eq. (5) makes forward solution with the CERRE 

nonlinear, but any inverse identification with them is 

linear. 
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[2] One version of identification 1 is ... 

 

 If n = #( ty )=#( tz ) and 0C = nI , then, CERRE (7)-(8) imply 

 

(9)   XM = N,  X =  2 1A , A , 

 

      M = 
n nxnn 1 0 nxn

1
nxn n nxn 01 0 n

I 0I 0
P

0 I 0I


       
            

, 

 

      N =  n nxnI ,0 , P = row-permuted nI . 

 

 Because RES coefficients { 1 ,
1

i i 0{ }  } are known, M is 

known; because 0  is nonsingular, M is nonsingular. 

 

 Therefore, structural coefficients 2
2 i 1{A }   are identified 

by X = 
1

NM

, whereupon remaining structural coefficients 

0A  and 0B  are identified by eqs. (5)-(6). 
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3. IDENTIFICATION 2. 
 

[1] One version of identification 2 is ... 

 

 If n = #( ty )=#( tz ) and 0C = nI , then, eqs. (2)-(3) imply 

 

(10)  XM = N, X =  0,  , M = 
0 1 1 0 2

n nxn

D D

I 0

   
 
 

, N =  0 1,  , 

 

and CERRE (8) is restated aS 

 

(11)  i  = i 1 , for i = 1,2,3,…, 

 

 Because RF coefficients { 1
i i 0{ }  ,

2
i i 1{D }  } are known, {M,N} 

are known; because 2 1 1A A   is nonsingular,  = 

1
2 1 1 2(A A ) A

    exists; because 0 2D  is nonsingular, M is 

nonsingular; all nonsingularities are proved in the paper. 

 

 Therefore, {, 0 } are identified by X = 
1

NM

, whereupon 

K
i i 1{ }   are identified by iterating on eq. (11). 
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4. CONCLUSIONS. 
 

[1] Extensions: 

 

(i) Add itz 's, so that #( tz ) = m > n = #( ty ). 

 

(ii) Add lags of tz . 

 

(iii) Add expected leads of tz . 

 

(iv) Add expected leads and lags of ty . 

 

(v) Add lags of t  and t . 

 

 The paper considers extensions (i)-(iii); all of the 

extensions follow the same logic as above, but result in 

different linear-identification eqs. XM = N, with 

different details and conditions for row rank(M) = full, 

so that identification X = 
T T 1

NM (MM )

 holds. 
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[2] Practical implications of identifications 1-2. 

 

 Identification 2 as consistent estimation (when assumed 

data moments are replaced by consistently estimated data 

moments) produces a linearly purely-data-based estimated 

LREM (without theoretical restrictions on coefficients). 

 

 A RES equation of the linearly estimated LREM can make 
predictions that are consistent with Lucas's (1976) 

critique of econometric policy evaluation. 

 

 A linearly estimated LREM can be compared in terms of in-
sample fit and out-of-sample predictions with a commonly 

nonlinearly estimated LREM in terms of nonlinearly 

restricted deep parameters. 

 

 A linearly estimated LREM can be a starting point or 

benchmark for developing a commonly nonlinearly estimated 

LREM, which could thereby fit data and predict better than 

an commonly nonlinearly estimated LREM motivated only or 

more narrowly by theoretical considerations. 
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