Polyspectral Factorization and Prediction for Quadratic Processes
 T.S. McElroy, D. Ghosh, S. Lahiri

Contact: Tucker McElro

 Research and Methodology Directorate U.S. Census BureauWashington, DC, USA
email: tucker.s.mcelroy@census.gov

This poster is released to inform interested parties of research and to encourage discussion. The views expressed on statistical issues are those of the author and not those of the U.S. Census Bureau. This
work partially supported by NSF research grant 1811998, 2019-2021 (DMS Co-PI). Development of a general framework for nonlinear prediction using autocumulants: Theory, methodology and computation.

1 Overview of Results
. Polyspectral factorization: bijection between cepstral coefficients and autocumulants
2. Wiener-Hopf factorization for infinite array spectral densities
3. Quadratic h-step ahead forecast filter
4. Conditions for quadratic filter to be linear

2 Main Objective

For a nonlinear stationary time series $\left\{X_{t}\right\}$ with autocovariance function $\left\{\gamma_{k}\right\}$, we provide explicit formulas for optimal filters $\Pi(z)=\sum_{k>0} \pi_{k} z^{k}$ and $\Pi(z, y)=\sum_{i, k>0} \pi_{j, k} z^{j} y^{k}$, where (for $h \geq 1$)

$$
\widehat{X}_{t+h \mid t}=\sum_{k \geq 0} \pi_{k} X_{t-k}+\sum_{k \geq j \geq 0} \pi_{j, k}\left(X_{t-j} X_{t-k}-\gamma_{k-j}\right) .
$$

Upper triangular form: by setting $\Pi^{(r)}(x)=\sum_{j \geq 0} \pi_{j}^{(r)} x^{j}$ with $\pi_{j}^{(r)}=\pi_{j, j+r}$,

$$
\Pi(z, y)=\sum_{j \geq 0} \sum_{r \geq 0} \pi_{j, j+r} z^{j} y^{j+r}=\sum_{r \geq 0} \Pi^{(r)}(z y) y^{r} .
$$

3 Framework and Notation

Let $\left\{X_{t}\right\}$ be a $k+1$ th order stationary time series with $k+1$ moments for given $k \geq 1$; the $k+1$ th order autocumulant function is defined by

$$
\gamma_{h_{1}, \ldots, h_{k}}=\operatorname{cum}\left(X_{t+h_{1},}, \ldots, X_{t+h_{k}}, X_{t}\right) .
$$

Under absolute summability, define the $k+1$ th order polyspectral density by

$$
f\left(\lambda_{1}, \ldots, \lambda_{k}\right)=\sum_{\underline{h} \in \mathbb{Z}^{k}} \gamma_{\underline{h}} \exp \left\{-i \underline{\underline{L}^{\prime}} \underline{\lambda}\right\},
$$

where we set $\underline{\lambda}=\left[\lambda_{1}, \ldots, \lambda_{k}\right]^{\prime}$, and each of these are frequencies in $[-\pi, \pi]$. The coefficients are recovered via integration over the unit torus:

$$
\gamma_{\underline{\underline{h}}}=\frac{1}{(2 \pi)^{k}} \int_{[-\pi, \pi]^{k}} \exp \{\underline{\underline{h}} \underline{\underline{\lambda}}\} f(\underline{\lambda}) d \underline{\lambda} .
$$

Shorthand: $\left\langle z^{h} g(z)\right\rangle_{z}=(2 \pi)^{-1} \int_{-\pi}^{\pi} e^{-i \lambda h} g\left(e^{-i \lambda}\right) d \lambda$, and for any $-\infty \leq r \leq s \leq \infty$ and Laurent Shorthand: $:\left(z^{n} g(z)\right\rangle_{z}^{s}=(2 \pi) \int_{-\pi} e^{-i n}$
series $f(z),[f(z)]_{r}^{s}=\sum_{j=r}^{s}\left\langle z^{-j} f(z)\right\rangle_{z} z^{j}$.

4 Linear Prediction of Quadratic Variables

In the case of linear h-step ahead forecasting, the optimal filter is given by $\eta(B)$ (where B is the backshift operator):

$$
\eta(z)=\left[z^{-h^{\Psi_{2}}}{ }_{2} z\right]_{0}^{\infty} \Psi_{2}(z)^{-1}=\sum_{j>0} \psi_{j+h^{2}}^{(2)} z^{j} \Psi_{2}(z)^{-1},
$$

where $\sigma^{2} \Psi_{2}(z) \Psi_{2}\left(z^{-1}\right)=f(z)$, the spectral density
For any $r \geq 0$ define the process $\left\{Y_{t}^{(r)}\right\}$ by $Y_{t}^{(r)}=X_{t} X_{t-r}-\gamma_{r}$, which is stationary with mean zero. With $\widehat{Y_{t-j}^{(r)}}=\Phi^{(j, r)}(B) X_{t}$, we have (new):

$$
\left.\Phi^{(j, r)}(z)=\sigma^{-2}\left[z^{j} \Psi_{2}\left(z^{-1}\right)^{-1}\left\langle y^{r} f\left(z y^{-1}, y\right)\right\rangle\right\rangle_{y}\right]_{0}^{\infty} \Psi_{2}(z)^{-}
$$

With (3) we can rewrite (1) as follows, with both summands orthogonal

$$
\widehat{X}_{t+h \mid t}=\eta(B) X_{t} \oplus \sum_{r \geq 0} \Pi^{(r)}(B)\left(Y_{t}^{(r)}-\widehat{Y_{t}^{(r)}}\right) .
$$

5 Factorization of Polyspectra

For a linear process $X_{t}=\Psi(B) Z_{t}$ with $\left\{Z_{t}\right\}$ i.i.d. and $\Psi(z)=\sum_{j \in Z} \psi_{j} z^{j}$, it is known that (where μ_{k+1} is the $k+1$ th cumulant of Z_{t})

$$
\begin{equation*}
f(\underline{z})=\mu_{k+1} \prod_{j=1}^{k} \Psi\left(z_{j}\right) \Psi\left(z_{1}^{-1} \cdots z_{k}^{-1}\right) \tag{5}
\end{equation*}
$$

We want to generalize this. Let \mathcal{S}_{k+1} be the group of permutations on $k+1$ elements, and ρ is a group representation for $\sigma \in \mathcal{S}_{k+1}$ to $k \times k$ matrices $\rho(\sigma)$; the autocumulant symmetry is then denoted b $\gamma_{h}=\gamma_{\rho(\sigma) \underline{h}}$. Also, (new) for any $\sigma \in \mathcal{S}_{k+1}$ the value of the polyspectra at variables z_{m} for $1 \leq m \leq$ the same if z_{m} is replaced by

$$
\prod_{j=1}^{k} z_{j}^{\left[\rho\left(\sigma^{-1}\right)\right]_{j m}} .
$$

The general polyspectral factorization (new) is

$$
\begin{equation*}
f(\underline{z}) \propto \prod_{\sigma \in \mathcal{S}_{k+1}} \Psi_{k+1}\left(\left\{\prod_{j=1}^{k} z_{j}^{[\rho(\sigma) D]_{j m}}\right\}_{m=1}^{k}\right) \tag{6}
\end{equation*}
$$

where D is an upper triangular matrix of ones, and $\Psi_{k+1}(\underline{u})=\exp \left\{\sum_{h>0} \tau_{D h} \underline{u}^{\underline{h}}\right\}$, with the shorthand $\underline{z}^{\underline{j}}=\prod_{\ell=1}^{k} z_{\ell}^{j_{\ell}}$; the coefficients τ are real numbers supported on the tetrahedral cone

$$
R=\left\{h_{1}, h_{2}, \ldots, h_{k} \in \mathbb{Z}: h_{1} \geq h_{2} \geq \ldots \geq h_{k} \geq 0\right\} .
$$

$$
\text { Figure 1: Absolute value of the } \operatorname{cisARCH}(1,1) \text { bispectrum. }
$$

Figure 2: τ matrix for the $\operatorname{GARCH}(1,1)$ proces .

We say a process is order $k+1$ quasi-linear if (5) holds for a Laurent series $\Psi(z)$; defining the cone's edges via $R_{j}=\left\{D \underline{h}: h_{i}=0\right.$ for all $\left.i \neq j\right\}$, a process is order $k+1$ quasi-linear (new) iff τ is supported is not supported on the edges (Figure 2)

6 Wiener-Hopf Factorization of Infinite Arrays
Define a 1-array Laurent series $\underline{\xi}(z)$ with r th component $\xi^{(r)}(z)$ for $r \geq 0$; define a 2 -array Laurent series $B(z)$ with component r, s given by $B^{(r, s)}(z)$ for $r, s \geq 0$. A power series array is special case where Laurent series is causal in z. Linear algebra carries over: multiplication, transpose, identity array, invertibility. By definition, a Laurent series 2-array $B(z)$ has a forward Wiener-Hopf factorization if

$$
B(z)=B^{-}\left(z^{-1}\right) B^{+}(z)^{\prime} .
$$

$B(z)$ has a backward Wiener-Hopf factorization if

$$
B(z)=B^{+}(z) B^{-}\left(z^{-1}\right)^{\prime} .
$$

With $\underline{\tau}(z)$ a Laurent series 1 -array, $\xi(z)$ a power series 1 -array, and $B(z)$ a Laurent series 2 -array, define the system

$$
[\underline{\tau}(z)]_{0}^{\infty}=[B(z) \underline{\xi}(z)]_{0}^{\infty} .
$$

If $B(z)$ has a forward Wiener-Hopf factorization (7) such that $B^{+}(z)$ and $B^{-}(z)$ are invertible, then (new) the system is solved by

$$
\underline{\xi}(z)=B^{+}(z)^{-1 t}\left[B^{-}\left(z^{-1}\right)^{-1} \underline{\tau}(z)\right]_{0}^{\infty}
$$

A Hermitian Laurent series 2-array $B(z)$ is positive definite if every Schur complement is a positive def nite (scalar) function. Suppose that $B(z)$ is a Hermitian Laurent series 2 -array that is positive definite. Then (new) there exist power series 2 -arrays $B^{-}(z)$ and $B^{+}(z)$ such that (8) holds.

7 Quadratic Forecast Formula
With (4) our objective is to compute the Laurent series 1 -array $\Pi(z)$ with r th component $\Pi^{(r)}(z)$ for $r \geq 0$. Let $A(z)$ be spectrum of the 1 -array process $\left\{\underline{Y}_{t}\right\}$, i.e., for any $r, s \geq 0,\left\langle z^{-k} A^{r, s)}(z)\right\rangle_{z}=$ $\operatorname{Cov}\left[Y_{t+k}^{(r)}, Y_{t}^{(s)}\right]$. Assumption P: The autocovariance generating function for the linear prediction of $Y_{t}^{(r)}$ from $\left\{Y_{t}^{(r-1)}, \ldots, Y_{t}^{(0)}\right\}$ is positive definite for all $r \geq 1$. This implies that $A(z)$ is positive definite. Define $\underline{L}(z)$ as the "forward-looking" portion of the bispectrum, via $L^{(s)}(z)=\left\langle y^{-s} f\left(z y, y^{-1}\right)\right\rangle_{y}$ rivially to a linear filter, because $\Phi(j, r)(z)=0$. If $\left\{X_{t}\right\}$ satisfies Assumptions P and L , then (new)

$$
\underline{\Pi}(z)=[0, I] B^{+}(z)^{-1}\left[B^{-}\left(z^{-1}\right)^{-1} \underline{R}(z)\right]_{0}^{\infty}
$$

where the $[0, I]$ operator denotes a forward row shift acting on a Laurent series 2 -array, and

$$
B(z)=\left[\begin{array}{cc}
1 & -\Psi_{2}(z)^{-1} \underline{L}\left(z^{-1}\right)^{\prime} \\
-\Psi_{2}\left(z^{-1}\right)^{-1} \underline{L}(z) & \sigma^{2} A(z)
\end{array}\right] \quad \underline{R}(z)=\left[\begin{array}{c}
0 \\
\sigma^{2} z^{-h}\left[\Psi_{2}(z)_{0}^{h-1} \Psi_{2}(z)^{-1} \underline{L}\left(z^{-1}\right)\right.
\end{array}\right] .
$$

The MSE of the quadratic filter is equal to the linear MSE minus the quantity $\left\langle Q^{\prime}\left(z^{-1}\right) Q(z)\right\rangle$, where

$$
\underline{Q}(z)=\sigma^{-1}\left[B^{+}\left(z^{-1}\right)^{-1} \underline{R}(z)\right]_{0}^{\infty}
$$

