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1 Overview of Results
1. Polyspectral factorization: bijection between cepstral coefficients and autocumulants
2. Wiener-Hopf factorization for infinite array spectral densities
3. Quadratic h-step ahead forecast filter
4. Conditions for quadratic filter to be linear

2 Main Objective
For a nonlinear stationary time series {Xt} with autocovariance function {γk}, we provide explicit
formulas for optimal filters Π(z) =

∑
k≥0 πkz

k and Π(z, y) =
∑
j,k≥0 πj,kz

jyk, where (for h ≥ 1)

X̂t+h|t =
∑
k≥0

πkXt−k +
∑

k≥j≥0

πj,k (Xt−jXt−k − γk−j). (1)

Upper triangular form: by setting Π(r)(x) =
∑
j≥0 π

(r)
j xj with π(r)

j = πj,j+r,

Π(z, y) =
∑
j≥0

∑
r≥0

πj,j+rz
jyj+r =

∑
r≥0

Π(r)(zy)yr.

3 Framework and Notation
Let {Xt} be a k+ 1th order stationary time series with k+ 1 moments for given k ≥ 1; the k+ 1th order
autocumulant function is defined by

γh1,...,hk = cum
(
Xt+h1, . . . , Xt+hk, Xt

)
.

Under absolute summability, define the k + 1th order polyspectral density by

f (λ1, . . . , λk) =
∑
h∈Zk

γh exp{−ih′λ},

where we set λ = [λ1, . . . , λk]′, and each of these are frequencies in [−π, π]. The coefficients are
recovered via integration over the unit torus:

γh =
1

(2π)k

∫
[−π,π]k

exp{ih′λ}f (λ) dλ.

Shorthand: 〈zhg(z)〉z = (2π)−1 ∫ π
−π e

−iλhg(e−iλ) dλ, and for any −∞ ≤ r ≤ s ≤ ∞ and Laurent
series f (z), [f (z)]sr =

∑s
j=r 〈z−jf (z)〉zzj.

4 Linear Prediction of Quadratic Variables
In the case of linear h-step ahead forecasting, the optimal filter is given by η(B) (where B is the back-
shift operator):

η(z) = [z−hΨ2(z)]
∞
0 Ψ2(z)−1 =

∑
j≥0

ψ
(2)
j+hz

j Ψ2(z)−1, (2)

where σ2Ψ2(z)Ψ2(z−1) = f (z), the spectral density.
For any r ≥ 0 define the process {Y (r)

t } by Y (r)
t = XtXt−r− γr, which is stationary with mean zero.

With Ŷ (r)
t−j = Φ(j,r)(B)Xt, we have (new):

Φ(j,r)(z) = σ−2[zjΨ2(z−1)
−1〈yrf (zy−1, y)〉y]

∞
0 Ψ2(z)−1. (3)

With (3) we can rewrite (1) as follows, with both summands orthogonal:

X̂t+h|t = η(B)Xt ⊕
∑
r≥0

Π(r)(B)(Y
(r)
t − Ŷ (r)

t ). (4)

To derive Π(r)(z) we need a factorization result for polyspectra.

5 Factorization of Polyspectra
For a linear process Xt = Ψ(B)Zt with {Zt} i.i.d. and Ψ(z) =

∑
j∈Zψjz

j, it is known that (where
µk+1 is the k + 1th cumulant of Zt)

f (z) = µk+1

k∏
j=1

Ψ(zj) Ψ(z−1
1 · · · z

−1
k ). (5)

We want to generalize this. Let Sk+1 be the group of permutations on k + 1 elements, and ρ is a group
representation for σ ∈ Sk+1 to k × k matrices ρ(σ); the autocumulant symmetry is then denoted by
γh = γρ(σ)h. Also, (new) for any σ ∈ Sk+1 the value of the polyspectra at variables zm for 1 ≤ m ≤ k
is the same if zm is replaced by

k∏
j=1

z
[ρ(σ−1)]jm
j .

The general polyspectral factorization (new) is

f (z) ∝
∏

σ∈Sk+1

Ψk+1




k∏
j=1

z
[ρ(σ)D]jm
j


k

m=1

 , (6)

where D is an upper triangular matrix of ones, and Ψk+1(u) = exp{
∑
h>0 τDh u

h}, with the shorthand

zj =
∏k
`=1 z

j`
` ; the coefficients τ are real numbers supported on the tetrahedral cone

R = {h1, h2, . . . , hk ∈ Z : h1 ≥ h2 ≥ . . . ≥ hk ≥ 0}.

Figure 1: Absolute value of the GARCH(1,1) bispectrum.

Figure 2: τ matrix for the GARCH(1,1) process.

We say a process is order k + 1 quasi-linear if (5) holds for a Laurent series Ψ(z); defining the cone’s
edges viaRj = {Dh : hi = 0 for all i 6= j}, a process is order k+1 quasi-linear (new) iff τ is supported
on R1 ∪ Rk. An example is the GARCH(1,1) process, which is not third order quasi-linear (Figure 1);
τ is not supported on the edges (Figure 2).

6 Wiener-Hopf Factorization of Infinite Arrays

Define a 1-array Laurent series ξ(z) with rth component ξ(r)(z) for r ≥ 0; define a 2-array Laurent
series B(z) with component r, s given by B(r,s)(z) for r, s ≥ 0. A power series array is special case
where Laurent series is causal in z. Linear algebra carries over: multiplication, transpose, identity array,
invertibility. By definition, a Laurent series 2-array B(z) has a forward Wiener-Hopf factorization if
there exist power series 2-arrays B−(z) and B+(z) such that

B(z) = B−(z−1)B+(z)
′
. (7)

B(z) has a backward Wiener-Hopf factorization if

B(z) = B+(z)B−(z−1)
′
. (8)

With τ (z) a Laurent series 1-array, ξ(z) a power series 1-array, andB(z) a Laurent series 2-array, define
the system

[τ (z)]∞0 = [B(z) ξ(z)]∞
0
.

If B(z) has a forward Wiener-Hopf factorization (7) such that B+(z) and B−(z) are invertible, then
(new) the system is solved by

ξ(z) = B+(z)
−1′

[B−(z−1)
−1
τ (z)]

∞
0 .

A Hermitian Laurent series 2-arrayB(z) is positive definite if every Schur complement is a positive def-
inite (scalar) function. Suppose that B(z) is a Hermitian Laurent series 2-array that is positive definite.
Then (new) there exist power series 2-arrays B−(z) and B+(z) such that (8) holds.

7 Quadratic Forecast Formula

With (4) our objective is to compute the Laurent series 1-array Π(z) with rth component Π(r)(z) for
r ≥ 0. Let A(z) be spectrum of the 1-array process {Y t}, i.e., for any r, s ≥ 0, 〈z−kA(r,s)(z)〉z =

Cov[Y
(r)
t+k, Y

(s)
t ]. Assumption P: The autocovariance generating function for the linear prediction of

Y
(r)
t from {Y (r−1)

t , . . . , Y
(0)
t } is positive definite for all r ≥ 1. This implies that A(z) is positive defi-

nite. Define L(z) as the “forward-looking” portion of the bispectrum, via L(s)(z) = 〈y−sf (zy, y−1)〉y
for s ≥ 0. Assumption L: L(z) is non-zero. If Assumption L is violated, the quadratic filter reduces
trivially to a linear filter, because Φ(j,r)(z) = 0. If {Xt} satisfies Assumptions P and L, then (new)

Π(z) = [0, I ]B+(z)
−′[

B−(z−1)
−1
R(z)

]∞
0
, (9)

where the [0, I ] operator denotes a forward row shift acting on a Laurent series 2-array, and

B(z) =

[
1 −Ψ2(z)−1L(z−1)

′

−Ψ2(z−1)
−1
L(z) σ2A(z)

]
R(z) =

[
0

σ2z−h[Ψ2(z)]h−1
0 Ψ2(z)−1L(z−1)

]
.

The MSE of the quadratic filter is equal to the linear MSE minus the quantity 〈Q′(z−1)Q(z)〉, where

Q(z) = σ−1
[
B+(z−1)

−1
R(z)

]∞
0
.

When R(z) = 0 the quadratic filter reduces to a linear filter. This is equivalent to

0 = [(z−h − η(z))L(z−1)]
∞
0 . (10)


