Time-varying Forecast Combination for High-Dimensional Data

Bin Chen and Kenwin Maung

University of Rochester

October, 2021

Chen & Maung (University of Rochester)

Forecast Combination

1 / 11 10/21

- When the number of forecasts is finite, we consider a new estimator for time-varying forecast combination weights and study its asymptotic properties. The estimator can be viewed as a generalization of the classical Granger and Ramanathan's (1984) regression estimator.
- We study a data-driven bandwidth selection method. It can be viewed as an analogue of the window size selection for classical rolling regression.
- When the number of potential forecasts is allowed to be larger than the sample size, we consider a two-step procedure to select the significant forecasts and estimate time-varying combination weights.
- The penalized estimator is shown to have the oracle property.

- Assume that a decision maker is interested in predicting some univariate series y_{t+1} , conditional on I_t , the information at time t, which consists a set of individual forecasts $f_t = (f_{t1}, f_{t2}, ..., f_{td})^{\mathsf{T}}$ in addition to current and past values of y, i.e., $I_t = (y_s, f_s)_{s=1}^t$
- We consider forecast combination with time-varying weights:

$$y_{t+1} = \omega_{0t} + f_t^{\mathsf{T}} \omega_{1t} + \varepsilon_{t+1}, \qquad t = 1, ..., T,$$

where $(\omega_{0t}, \omega_{1t}^{\mathsf{T}})^{\mathsf{T}}$ are adapted to the current information set I_t .

- We adopt the framework of the smooth time-varying regression model proposed by Robinson(1989) and Cai (2007).
- Assume ω_{0t} = ω₀ (t/T) and ω_{1t} = ω₁ (t/T) are smooth function of the standardized time t/T over [0,1].:

$$y_{t+1} = \omega_0 (t/T) + f_t^{\mathsf{T}} \omega_1 (t/T) + \varepsilon_{t+1}$$

$$\equiv x_t^{\mathsf{T}} \beta (t/T) + \varepsilon_{t+1}$$

$$\simeq x_t^{\mathsf{T}} \beta_s^0 + \frac{s-t}{T} x_t^{\mathsf{T}} \beta_s^1 + \varepsilon_{t+1},$$

where s is in some neighborhood of t.

Consider the following local least squares problem:

$$\min_{\gamma \in \mathbb{R}^{2(d+1)}} \sum_{s=t-\lfloor Th \rfloor, s \neq t}^{t+\lfloor Th \rfloor} k\left(\frac{s-t}{Th}\right) \left[y_{s+1} - \alpha_0^{\mathsf{T}} x_s - \alpha_1^{\mathsf{T}} \left(\frac{s-t}{T}\right) x_s\right]^2$$
$$= \sum_{s=t-\lfloor Th \rfloor, s \neq t}^{t+\lfloor Th \rfloor} k_{st} (y_{s+1} - \gamma^{\mathsf{T}} q_{st})^2,$$

where $\gamma = (\alpha_0^T, \alpha_1^T)^T$ is a $2(d+1) \times 1$ vector, α_j is a $(d+1) \times 1$ coefficient vector for $(\frac{s-t}{T})^j x_s$, j = 0, 1, $q_{st} = z_{st} \otimes x_s$ is a $2(d+1) \times 1$ vector, and \otimes is the Kronecker product.

Window Length Selection

• Global Leave-one-out cross-validation (CV)

$$\hat{h}_{CV} = rg \min_{c_1 T^{-1/5} \leq h \leq c_2 T^{-1/5}} CV(h),$$

where

$$CV(h) = \Sigma_{s=1}^{T} (y_{s+1} - x_s^{\mathsf{T}} \hat{\beta}_s)^2.$$

• Theorem 1: Suppose Assumptions A.1-A.4 hold. Then

$$CV\left(h
ight)=IMSCFE\left(h
ight)+o_{P}\left(T^{-4/5}
ight)$$

uniformly in h.

• Proposition 2: Suppose Assumptions A.1-A.4 hold. As $T \rightarrow \infty$,

$$\hat{h}/h^{opt}
ightarrow 1$$
, a.s.

where h^{opt} is the optimal bandwidth which minimizes *IMSCFE* (*h*).

• In practice, there might be very large number of forecasts and some forecasts might be redundant. So we consider the case with ultra-high dimensional forecasts

$$y_{t+1} = \omega_{0t} + f_t^{\mathsf{T}} \omega_{1t} + \varepsilon_{t+1}, \qquad t = 1, ..., T,$$

where the f_t is $p_T \times 1$ and p_T can be larger than T.

• We assume that $1 \le d_T < p_T$ such that $\omega_{1t,j} \ne 0$ for $1 \le j \le d_T$ and $\omega_{1t,j} = 0$ for $d_T < j \le p_T$.

٥

 d_T may diverge with the sample size T but it is much smaller than T a dimension of the whole forecasts p_T .

• With high dimension, the local linear estimation doesn't work. We first consider penalized local linear estimation

$$\begin{split} \tilde{\gamma}_t &= \operatorname*{arg\,min}_{\gamma} \sum_{s=t-\lfloor Th \rfloor, s \neq t}^{t+\lfloor Th \rfloor} k\left(\frac{s-t}{Th}\right) \left[y_{s+1} - \alpha_0^{\mathsf{T}} x_s\right] \\ &- \alpha_1^{\mathsf{T}} \left(\frac{s-t}{T}\right) x_s \right]^2 + \lambda_1 \left|\alpha_0\right| + \lambda_2 \left|h\alpha_1\right|, \end{split}$$

where λ_1 and λ_2 are two tuning parameters.

• Then the local linear estimator for β_t is given by

$$\tilde{\boldsymbol{\beta}}_t = (\boldsymbol{e}_1^\mathsf{T} \otimes \boldsymbol{I}_{(\boldsymbol{p}_{\mathcal{T}}+1)}) \tilde{\boldsymbol{\gamma}}_t.$$

Penalized Estimation with Group SCAD

Further consider the estimation with group scad

$$\hat{\mathbf{Y}}^{h} = \operatorname{arg\,min}_{\mathbf{Y}\in\mathbb{R}^{T\times(p_{T}+1)}} T^{-1} \sum_{t=1}^{T-1} \sum_{s=t-\lfloor Th \rfloor, s\neq t}^{t+\lfloor Th \rfloor} k_{st} [y_{s+1} - \alpha_{0t}^{\mathsf{T}} x_{s} - \alpha_{1t}^{\mathsf{T}} \\ \times \left(\frac{s-t}{T}\right) x_{s}]^{2} + \sum_{j=1}^{p_{T}} p_{\lambda_{3}}^{\prime} \left(\left\|\tilde{B}_{j}\right\|\right) \left\|\alpha_{0,j}\right\| + \sum_{j=1}^{p_{T}} p_{\lambda_{4}}^{\prime} \left(\tilde{D}_{j}\right) \left\|h\alpha_{1,j}\right\|$$

where λ_3 and λ_4 are two tuning parameters, $\alpha_i = (\alpha_{i1}, \alpha_{i2}, ..., \alpha_{iT})^{\mathsf{T}}$ for i = 0, 1, and $\alpha_{i,j}$ is the *jth* column of α_i , \tilde{B}_j is the *jth* column of the LASSO-based local linear estimator \tilde{B} .

Penalized Estimation with Group SCAD

۲

$$\tilde{D}_{j} = \left\{ \sum_{t=1}^{T-1} \left[\tilde{\beta}_{t,j} - \frac{1}{T} \sum_{s=1}^{T} \tilde{\beta}_{s,j} \right]^{2} \right\}^{1/2}$$

which measures the smoothness of the LASSO-based local linear estimator \tilde{B} . Moreover, $p'_{\lambda}(\cdot)$ is the derivative of the SCAD penalty function with regularization parameter λ defined by

$$p_{\lambda}'\left(x
ight)=\lambda\left[1\left(x\leq\lambda
ight)+rac{\left(a\lambda-x
ight)_{+}}{\left(a-1
ight)\lambda}1\left(x>\lambda
ight)
ight].$$

• Then the local linear estimator for β_t with the group SCAD penalty is given by

$$\hat{\boldsymbol{\beta}}_t^h = (\boldsymbol{e}_1^\mathsf{T} \otimes \boldsymbol{I}_{(p_T+1)}) \hat{\boldsymbol{\gamma}}_t^h,$$

Penalized Estimation with Group SCAD

• Theorem 2: Suppose Assumptions A.1,A.2,A.3(i), A.4, HD.1–3 hold. We have

$$\mathsf{P}(\hat{S}=S_0)
ightarrow 1$$
,

as $T \to \infty$.

• Theorem 3: Suppose Assumptions A.1,A.2,A.3(i), HD.1–3 hold. We have

$$\sqrt{Th}A_{T}\Omega^{o-1/2}(\tau)\left\{\hat{\beta}^{o,h}(\tau)-\beta^{o}(\tau)-\frac{h^{2}}{2}\mu_{2}\beta^{o''}(\tau)+o_{P}(h^{2})\right.$$

$$\rightarrow \quad {}^{d}N(0,G),$$

as $T \to \infty$, where $\Omega^o(\tau) = 2\nu_0 M^{o-1}(\tau) V^o(\tau) M^{o-1}(\tau)$, and A_T is an arbitrary $q \times d$ matrix such that $A_T A^{\intercal} \to G$ for a given finite q.