
Time-varying Forecast Combination for
High-Dimensional Data

Bin Chen and Kenwin Maung

University of Rochester

October, 2021

Chen & Maung (University of Rochester) Forecast Combination 10/21 1 / 11



The contributions of our paper

When the number of forecasts is finite, we consider a new estimator
for time-varying forecast combination weights and study its
asymptotic properties. The estimator can be viewed as a
generalization of the classical Granger and Ramanathan’s (1984)
regression estimator.

We study a data-driven bandwidth selection method. It can be viewed
as an analogue of the window size selection for classical rolling
regression.

When the number of potential forecasts is allowed to be larger than
the sample size, we consider a two-step procedure to select the
significant forecasts and estimate time-varying combination weights.

The penalized estimator is shown to have the oracle property.
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Time-varying Combination Weights

Assume that a decision maker is interested in predicting some
univariate series yt+1, conditional on It , the information at time t,
which consists a set of individual forecasts ft = (ft1,ft2, ..., ftd )

ᵀ in
addition to current and past values of y , i.e., It = (ys , fs )

t
s=1

We consider forecast combination with time-varying weights:

yt+1 = ω0t + f
ᵀ
t ω1t + εt+1, t = 1, ...,T ,

where (ω0t ,ω
ᵀ
1t )

ᵀ are adapted to the current information set It .
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Nonparametric estimation

We adopt the framework of the smooth time-varying regression model
proposed by Robinson(1989) and Cai (2007).

Assume ω0t = ω0 (t/T ) and ω1t = ω1 (t/T ) are smooth function
of the standardized time t/T over [0,1].:

yt+1 = ω0 (t/T ) + f
ᵀ
t ω1 (t/T ) + εt+1

≡ xᵀt β (t/T ) + εt+1

' xᵀt β0s +
s − t
T

xᵀt β1s + εt+1,

where s is in some neighborhood of t.
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Nonparametric estimation

Consider the following local least squares problem:

min
γ∈R2(d+1)

t+bThc

∑
s=t−bThc,s 6=t

k
(
s − t
Th

) [
ys+1 − αᵀ0xs − αᵀ1

(
s − t
T

)
xs

]2

=
t+bThc

∑
s=t−bThc,s 6=t

kst (ys+1 − γᵀqst )2,

where γ = (αᵀ0 , α
ᵀ
1)
ᵀ is a 2(d + 1)× 1 vector, αj is a (d + 1)× 1

coeffi cient vector for ( s−tT )
jxs , j = 0, 1, qst = zst ⊗ xs is a 2(d + 1)× 1

vector, and ⊗ is the Kronecker product.
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Window Length Selection

Global Leave-one-out cross-validation (CV)

ĥCV = arg min
c1T −1/5≤h≤c2T −1/5

CV (h),

where
CV (h) = ΣTs=1(ys+1 − xᵀs β̂s )

2.

Theorem 1: Suppose Assumptions A.1-A.4 hold. Then

CV (h) = IMSCFE (h) + oP
(
T−4/5

)
uniformly in h.

Proposition 2: Suppose Assumptions A.1-A.4 hold. As T → ∞,

ĥ/hopt → 1, a.s.

where hopt is the optimal bandwidth which minimizes IMSCFE (h).
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High Dimensional Case

In practice, there might be very large number of forecasts and some
forecasts might be redundant. So we consider the case with ultra-high
dimensional forecasts

yt+1 = ω0t + f
ᵀ
t ω1t + εt+1, t = 1, ...,T ,

where the ft is pT × 1 and pT can be larger than T .
We assume that 1 ≤ dT < pT such that ω1t ,j 6= 0 for 1 ≤ j ≤ dT
and ω1t ,j = 0 for dT < j ≤ pT .

dT may diverge with the sample size T but it is much smaller than T and the
dimension of the whole forecasts pT .
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Penalized Local Linear Estimation

With high dimension, the local linear estimation doesn’t work. We
first consider penalized local linear estimation

γ̃t = argmin
γ

t+bThc

∑
s=t−bThc,s 6=t

k
(
s − t
Th

)
[ys+1 − αᵀ0xs

−αᵀ1

(
s − t
T

)
xs ]2 + λ1 |α0|+ λ2 |hα1| ,

where λ1 and λ2 are two tuning parameters.

Then the local linear estimator for βt is given by

β̃t = (e
ᵀ
1 ⊗ I(pT+1))γ̃t .
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Penalized Estimation with Group SCAD

Further consider the estimation with group scad

Υ̂h = argmin
Υ∈RT×(pT +1)

T−1
T−1
∑
t=1

t+bThc

∑
s=t−bThc,s 6=t

kst [ys+1 − αᵀ0txs − αᵀ1t

×
(
s − t
T

)
xs ]2 +

pT

∑
j=1
p
′
λ3

(∥∥B̃j∥∥) ‖α0,j‖+ pT

∑
j=1
p′λ4
(
D̃j
)
‖hα1,j‖

where λ3 and λ4 are two tuning parameters, αi = (αi1, αi2, ..., αiT )
ᵀ

for i = 0, 1, and αi ,j is the jth column of αi , B̃j is the jth column of
the LASSO-based local linear estimator B̃.
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Penalized Estimation with Group SCAD

D̃j =

T−1
∑
t=1

[
β̃t ,j −

1
T

T

∑
s=1

β̃s ,j

]2
1/2

,

which measures the smoothness of the LASSO-based local linear
estimator B̃. Moreover, p′λ (·) is the derivative of the SCAD penalty
function with regularization parameter λ defined by

p′λ (x) = λ

[
1 (x ≤ λ) +

(aλ− x)+
(a− 1) λ

1 (x > λ)

]
.

Then the local linear estimator for βt with the group SCAD penalty is
given by

β̂
h
t = (e

ᵀ
1 ⊗ I(pT+1))γ̂

h
t ,
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Penalized Estimation with Group SCAD

Theorem 2: Suppose Assumptions A.1,A.2,A.3(i), A.4, HD.1—3 hold.
We have

P(Ŝ = S0)→ 1,

as T → ∞.
Theorem 3: Suppose Assumptions A.1,A.2,A.3(i), HD.1—3 hold. We
have

√
ThATΩo−1/2 (τ)

{
β̂
o ,h
(τ)− βo (τ)− h

2

2
µ2βo ′′ (τ) + oP

(
h2
)}

→ dN (0,G ) ,

as T → ∞, where Ωo (τ) = 2ν0Mo−1 (τ)V o (τ)Mo−1 (τ) , and AT
is an arbitrary q × d matrix such that ATAᵀ → G for a given finite q.
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