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Linear signal plus noise

Consider the following linear signal plus noise speci�cation:

yt = τµt + εt , εt
iid
∼ (0, σ2)

µt+1 = φµt + ηt , ηt
iid
∼ (0,$).

We compute µt+1|t = E[µt+1|Ft ] via the Kalman �lter (KF), which, in its

innovation form, is:

µt+1|t = φµt |t−1 + ktvt ,

where vt = yt − τµt |t−1 is the prediction error and kt = (φPt |t−1τ)/(τ
2Pt |t−1 + σ

2)

is the Kalman gain.

If εt and ηt are Gaussian, the KF is the minimum prediction error variance

unbiased estimator (MVUE)

If εt and ηt are not Gaussian, the KF is the minimum prediction error

variance linear unbiased estimator (MVLUE)



Parameter uncertainty

Assume that there is uncertainty (for example) in the τ parameter, i.e.:

yt = τSt
µt + εt , εt

iid
∼ (0, σ2)

µt+1 = φµt + ηt , ηt
iid
∼ (0,$),

where St selects, independently over time, the τ parameter between a number of

alternative values, τ1, . . . , τJ , with probabilities P(St = j ) = αj .

In this case, computing the MVUE is unfeasible because its computation requires

(discrete) integration of all past possible realizations of St , which are J t .

Note that the independence of the St variables is of no help here.



Parameter uncertainty: the MVLUE

We de�ne the linear estimator µ∗t+1 = β
∗
t + κ

∗
t yt for β

∗
t and κ

∗
t that solves:{

E[µ∗t+1 − µt+1|Ft−1] = 0

V[µ∗t+1 − µt+1|Ft−1] = !min
,

and �nd that

µ∗t+1 = φµt |t−1 + κ
∗
t vt ,

where vt = yt − 	τµt |t−1 and

κ∗t =
φPt |t−1	τ

µ2
t |t−1(υ− 	τ2) + υPt |t−1 + σ2

with 	τ =
∑J

j=1 αj τj and υ =
∑J

j=1 αj τ
2
j .

When J = 1 ⇒ no uncertainty ⇒ the KF.



Parameter uncertainty: the MCVLUE

We introduce the minimum conditional predictive variance linear unbiased

estimator (MCVLUE). Let �µj ,t+1 = �βj ,t + �κj ,tyt for j = 1, . . . ,J with �βj ,t and �κj ,t
de�ned such that {

E[µ∗j ,t+1 − µt+1|Ft−1,St = j ] = 0

V[µ∗j ,t+1 − µt+1|Ft−1,St = j ] = !min
,

and �nd

�µj ,t+1 = φµt |t−1 + �κj ,tvj ,t ,

where

�κj ,t =
φPt |t−1τj

τ2jPt |t−1 + σ2
,

and vj ,t = yt − τjµt |t−1.



Parameter uncertainty: the MCVLUE

The MCVLUE is then de�ned as �µt+1 =
∑J

j=1 ξj ,t �µj ,t+1, such that

�µt+1 = φµt |t−1 +

J∑
j=1

ξj ,t�κj ,tvj ,t ,

where ξj ,t = P(St = j |Ft ), for j = 1, . . . ,J , are �ltered probabilities given by:

ξj ,t =
αjpj (yt |Ft−1,St = j )∑J

k=1 αkpk (yt |Ft−1,St = k)
,

where pj (·|Ft−1,St = j ) is the density of the random variable yt |(Ft−1,St = j ).

i) E[�µt+1 − µt+1|Ft−1] = 0, i.e. the MCVLUE is unbiased.

ii) Preliminary results suggest that when there is parameter uncertainty:

V[�µt+1 − µt+1|Ft−1] < V[µ∗t+1 − µt+1|Ft−1], i.e. MCVLUE is more e�cient

than MVLUE.



Parameter uncertainty: the MCVLUE

It turns out that the innovation form �µt+1 = φµt |t−1 +
∑J

j=1 ξj ,t�κj ,tvj ,t has been

implemented extensively as a result of a �collapsing step�, i.e. an approximation

required to avoid the marginalization of St−1,St−2, . . . , without realising that it is

the MCVLUE! For example by:

Bar-Shalom and Tse (1975) in their �probabilistic data association �lters�.

Harrison and Stevens (1976) in their multi-process models.

Gordon and Smith (1990) in their extension of the linear dynamic model.

Shumway and Sto�er (1991) due to the wrong conclusion about

pj (yt |Ft−1,St = j ) being Gaussian in the model with parameter uncertainty.

Kim (1994) and Kim and Nelson (1999), in order to make their �lter operable.



MCVLUE is a Dyanmic Adaptive Mixture Model (DAMM)

The DAMM model of Catania (2019) is an observation driven model that

postulates an innovation form for the dynamic parameters in the �rst place and a

distributional assumption of the kind yt |(Ft−1,St ) ∼ D(θSt ,t ). The recursion for

θSt ,t is a score driven one, Creal et al. (2013) and Harvey (2013):

θj ,t+1 = ωj + κjξj ,tuj ,t + φjθj ,t ,

where uj ,t =
∂ log pj (yt |Ft−1,St=j )

∂θj ,t
.

When yt is conditionally Gaussian (D ≡ N ) and the dynamic parameters are the

conditional means (θSt ,t ≡ µSt ,t ), the �lter implied by the DAMM for E [yt+1|Ft ] is

equivalent to the one implied by the MCVLUE in the steady state (�κj ,t = �κj ).

So the ad hoc �collapsing step� actually leads to the MCVLUE which coincides

with the DAMM ⇒ let's study it!



What we do in the paper

1) We study the statistical properties of a DAMM model with conditionally
Student's t shocks for the location parameters.

i) Conditions for strong and weak stationarity.

ii) Closed form solutions for E[yt+h |Ft ] and V[yt+h |Ft ]

iii) Su�cient conditions for the continuous invertibility of the �ltered sequences

θ̂j ,t+1.

iv) Consistency and asymptotic Normality of the maximum likelihood estimator.

2) Comparison with the mixture autoregressive models of Wong and Li (2000)

and Wong et al. (2009).

3) Monte Carlo simulation analysis.

4) Empirical comparison between the DAMM, KF, MAR, and the robust KF

(RobKF) of Calvet et al. (2015).



An example with US industrial production
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Figure: US industrial production at the monthly frequency from February 1919 to

November 2019. Blue bands indicate period of recession according to the NBER recession

indicators..



Filtered estimates
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(a) Gaussian DAMM
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(b) Student's t DAMM
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(c) Gaussian MAR
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(d) Student's t MAR
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(e) KF
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(f) RobKF

Figure: Signal extraction for the US industrial production from February 1919 to

November 2019.



Conclusion

When the conditional mean of a mixture of Gaussian distributions is

estimated over time using the score (DAMM) we obtain a �lter that resembles

the ones discussed by Harrison and Stevens (1976) and Shumway and Sto�er

(1991), among others, which we show is the MCVLUE.

We study the statistical properties of these �lters and the associated

maximum likelihood estimator.

An empirical illustration demonstrates the better performance of the DAMM

with respect to the mixture of autoregressions of Wong and Li (2000) and

Wong et al. (2009), and estimates from a contaminated signal plus noise

model computed with the robust KF of Calvet et al. (2015).



Future research

DAMM can also include time varying mixture probabilities and mixture

components scales, see Catania (2019). This paper can be extended by

including those features.

Future research should focus on other links provided by score driven models

(like the DAMM), and unobserved component models.
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