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Motivation and Objectives

• Factor-augmented forecasts
1. Estimate the latent factors from data.
2. Augment the estimated factors to forecasting equations.

• Estimated factors determine forecasting accuracy.

• Objectives:

1. Evaluate comprehensively forecasting power of many factor estimation
techniques, under the same forecasting framework.

2. How estimated factors affect forecasting power?

3. Which factor-augmented forecasting method tends to give the best results?
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Model
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Factor Models

• Factors are a few latent reference variables that drive comovements of data.
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yt+1: a target variable being forecasted,
xt : N predictors
Ft : k latent common factors in predictors.

• The best forecast for yt+1 at t is β′Ft . Let Gt be m factors such that
δ′Gt = β

′Ft .
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• The best forecast for yt+1 at t is β′Ft . Let Gt be m factors such that
δ′Gt = β

′Ft .

• Why Ft and Gt should be distinguished?
• Our goal is NOT recovering Ft . What we need is a specific linear

combination of FtFtFt , which is β′Ftβ′Ftβ′Ft .
• Some factor estimations recover HFtHFtHFt with some H. We recover
β′H−1HFt = β

′Ft . Then Gt = HFtGt = HFtGt = HFt , δ′ = β′H−1 and m = km = km = k.
• But some factor estimations recover β′Ft with Gt such that m ≤ km ≤ km ≤ k.
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• The best forecast for yt+1 at t is β′Ft . Let Gt be m factors such that
δ′Gt = β

′Ft .

• Why Ft and Gt should be distinguished?
• Factor estimation methods estimate Gt , which may not be identical to Ft .
• k:k:k: The number of the original factors. (dimension of Ft)
• m:m:m: The optimal number of estimated factors by the given factor estimation

method. (dimension of Gt)
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Estimation of Factors
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1. Principal Component Analysis (PCA)

• λ̂1, ..., λ̂K are the k largest eigenvalues of SNT = X ′X/(NT ).

• α̂j =
√

N × eigenvector corresponding to λ̂j .

• Let Â = [α̂1, ..., α̂k], where Â is N × k matrix.

• Then PCA factors ĜPCA are estimated as ĜPCA ≡ XÂ/N

• k is the asymptotically optimal number of PCA factors. It can be
estimated by many different methods (called Decision Rules).

• PCA factors are estimated without using the information on the
relationship between X and y. (unsupervised method)
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2. Partial Least Squares (PLS) Factors: Ahn and Bae (2020)

• Ahn and Bae (2020) provide asymptotic properties of the PLS factors:

• Note that y = F β + u and we should recover F β.

• Let F β = ΣJ
j=1F(j)β(j) , where the factors in F(j) have the same variances σ2

j

(σ2
j , σ

2
j′ ), J: number of distinct factor variances

• α̃j = Sj−1
NT × X ′y/(N1/2T ), where SNT = X ′X/(NT ) and Ã = [α̃1, ..., α̃J].

• G̃PLS
T×J
≡ XÃ = (F(1)β(1), ..., F(J)β(J))

T×J
B̃

J×J
+ EÃ

negligible

• J (number of distinct factor variances) is the asymptotically optimal number
of PLS factors to use.

• Simulation results: Forecasting with X α̃1 (PLS1) very often outperforms
forecasting with more PLS factors. This is so even if J > 1.
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Experiment Design
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Forecasting Models

• Denote 12-month-ahead variable as yt+12. Using t dated predictors, we
will forecast ŷt+12 |t , using all the available information up to t.

• The forecast for yt+12 is

ŷt+12 = θ̂ + δ̂′Ĝt︸︷︷︸
β̂′F̂t

+

p∑
j=1

γ̂′j yt−j+1

where Ĝt is the estimated factors.

• Estimate these unobservable Gt out of X using 7 factor estimation methods.

• But we should decide
1. m: Decision rules for number of estimated factors
2. p: Bayesian Information Criteria
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Results
Which method tends to give the best results?
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Strong Forecasting Performance of PLS1

• There are 101 combinations of all factor estimation methods and decision
rules, for a target variable.

• There are 148 target variables.

• PLS1 is the best out of 101 combinations for 23 variables (around 16%),
most frequently.

• The main takeaway: PLS1 gives forecasting performance very close to
the best result out of 101 combinations.
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PLS1 vs PCA k, All Variables
• I compared forecasting results of PLS1 and PCA kkk, with k = 1, 2, ..., 12k = 1, 2, ..., 12k = 1, 2, ..., 12,
for all target variables.
• For each variable, I found the best method out of 13 methods.
• The following is the percentage that each method was the best.
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PLS1 vs PCA with Decision Rules, All Variables
• I compared forecasting results of PLS1 and PCA with all possible
decision rules, for all the target variables.

BN: Bai and Ng (2002), AH: Ahn and Horenstein (2013),
ON: Onatski (2010), ABC: Alessi et al (2010)
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