Factor-Augmented Forecasting in Big Data

Juhee Bae University of Glasgow

NBER-NSF Time Series Conference October, 2021

Motivation and Objectives

- Factor-augmented forecasts
 - 1. Estimate the latent factors from data.
 - 2. Augment the estimated factors to forecasting equations.
- Estimated factors determine forecasting accuracy.
- Objectives:
 - 1. Evaluate comprehensively forecasting power of many factor estimation techniques, under the same forecasting framework.
 - 2. How estimated factors affect forecasting power?
 - 3. Which factor-augmented forecasting method tends to give the best results?

Model

$$y_{t+1} = \frac{\beta'}{1 \times k} \frac{F_t}{k \times 1} + u_{t+1} \qquad \qquad y = \frac{F}{T \times k} \frac{\beta}{k \times 1} + \frac{u}{T \times 1}$$
$$\Rightarrow \qquad x_t = \Phi F_t + e_t \qquad \qquad \Rightarrow \qquad X_{T \times N} = \frac{F}{T \times k} \frac{\Phi'}{k \times N} + \frac{F}{T \times N}$$

- y_{t+1} : a target variable being forecasted,
- x_t : N predictors
- F_t : k latent common factors in predictors.

$$y_{t+1} = \underbrace{\begin{bmatrix} \delta' & G_t \\ 1 \times m & m \times 1 \end{bmatrix}}_{\beta'F_t} + u_{t+1} \qquad y_{T\times 1} = \underbrace{G}_{T\times m} \underbrace{\delta}_{T\times 1} + \underbrace{U}_{T\times 1}$$
$$\Rightarrow \qquad F_{\beta}$$
$$x_t = \underbrace{\Phi}_{N \times k} \underbrace{F_t}_{k \times 1} + \underbrace{e_t}_{N \times 1} \qquad X_T = \underbrace{F}_{T\times k} \underbrace{\Phi'}_{k \times N} + \underbrace{E}_{T\times N}$$

- y_{t+1} : a target variable being forecasted,
- x_t : **N** predictors
- F_t : k latent common factors in predictors.
- The best forecast for y_{t+1} at *t* is $\beta' F_t$. Let G_t be *m* factors such that $\delta' G_t = \beta' F_t$.

$$y_{t+1} = \underbrace{\begin{bmatrix} \delta' & G_t \\ 1 \times m & m \times 1 \end{bmatrix}}_{\beta' F_t} + u_{t+1} \qquad y_{T \times 1} = \underbrace{G}_{T \times m} \underbrace{\delta}_{T \times 1} + \underbrace{U}_{T \times 1}$$
$$\Rightarrow \qquad F_{\beta}$$
$$x_t = \underbrace{\Phi}_{N \times k} \underbrace{F_t}_{k \times 1} + \underbrace{e_t}_{N \times 1} \qquad X_{T \times N} = \underbrace{F}_{T \times k} \underbrace{\Phi'}_{k \times N} + \underbrace{E}_{T \times N}$$

- The best forecast for y_{t+1} at *t* is $\beta' F_t$. Let G_t be *m* factors such that $\delta' G_t = \beta' F_t$.
- Why *F*_t and *G*_t should be distinguished?
 - Our goal is NOT recovering *F_t*. What we need is a specific linear combination of *F_t*, which is β'*F_t*.
 - Some factor estimations recover HF_t with some H. We recover $\beta' H^{-1} HF_t = \beta' F_t$. Then $G_t = HF_t$, $\delta' = \beta' H^{-1}$ and m = k.
 - But some factor estimations recover $\beta' F_t$ with G_t such that $m \leq k$.

$$y_{t+1} = \underbrace{\begin{bmatrix} \delta' & G_t \\ 1 \times m & m \times 1 \end{bmatrix}}_{\beta'F_t} + u_{t+1} \qquad y_{T\times 1} = \underbrace{G}_{T\times m} \underbrace{\delta}_{T\times 1} + \underbrace{u}_{T\times 1}$$
$$\Rightarrow \qquad F_{\beta}$$
$$x_t = \underbrace{\Phi}_{N \times k} \underbrace{F_t}_{k \times 1} + \underbrace{e_t}_{N \times 1} \qquad X_{T\times N} = \underbrace{F}_{T\times k} \underbrace{\Phi'}_{k \times N} + \underbrace{E}_{T\times N}$$

- The best forecast for y_{t+1} at *t* is $\beta' F_t$. Let G_t be *m* factors such that $\delta' G_t = \beta' F_t$.
- Why *F_t* and *G_t* should be distinguished?
 - Factor estimation methods estimate G_t , which may not be identical to F_t .
 - *k*: The number of the original factors. (dimension of F_t)
 - *m*: The optimal number of estimated factors by the given factor estimation method. (dimension of G_t)

Estimation of Factors

1. Principal Component Analysis (PCA)

- $\hat{\lambda}_1, ..., \hat{\lambda}_K$ are the *k* largest eigenvalues of $S_{NT} = X'X/(NT)$.
- $\hat{\alpha}_j = \sqrt{N} \times \text{eigenvector corresponding to } \hat{\lambda}_j.$
- Let $\hat{A} = [\hat{\alpha}_1, ..., \hat{\alpha}_k]$, where \hat{A} is $N \times k$ matrix.
- Then PCA factors \hat{G}_{PCA} are estimated as $\hat{G}_{PCA} \equiv X\hat{A}/N$
- *k* is the asymptotically optimal number of PCA factors. It can be estimated by many different methods (called Decision Rules).
- PCA factors are estimated without using the information on the relationship between *X* and *y*. (unsupervised method)

2. Partial Least Squares (PLS) Factors: Ahn and Bae (2020)

- Ahn and Bae (2020) provide asymptotic properties of the PLS factors:
 - Note that $y = \boxed{F\beta} + u$ and we should recover $F\beta$.
 - Let $F\beta = \sum_{j=1}^{J} F_{(j)}\beta_{(j)}$, where the factors in $F_{(j)}$ have the same variances σ_j^2 $(\sigma_j^2 \neq \sigma_{j'}^2)$, *J*: number of distinct factor variances

•
$$\tilde{\alpha}_j = S_{NT}^{j-1} \times X' y / (N^{1/2}T)$$
, where $S_{NT} = X' X / (NT)$ and $\tilde{A} = [\tilde{\alpha}_1, ..., \tilde{\alpha}_J]$.

•
$$\tilde{G}_{PLS} \equiv X\tilde{A} = (F_{(1)}\beta_{(1)}, ..., F_{(J)}\beta_{(J)}) \tilde{B}_{J\times J} + \tilde{E}\tilde{A}_{negligible}$$

- *J* (number of distinct factor variances) is the asymptotically optimal number of PLS factors to use.
- Simulation results: Forecasting with $X\tilde{\alpha}_1$ (PLS1) very often outperforms forecasting with more PLS factors. This is so even if J > 1.

Experiment Design

Forecasting Models

- Denote 12-month-ahead variable as y_{t+12} . Using *t* dated predictors, we will forecast $\hat{y}_{t+12|t}$, using all the available information up to *t*.
- The forecast for *y*_{t+12} is

$$\hat{y}_{t+12} = \hat{\theta} + \underbrace{\hat{\delta}'\hat{G}_t}_{\hat{\beta}'\hat{F}_t} + \sum_{j=1}^p \hat{\gamma}'_j y_{t-j+1}$$

where \hat{G}_t is the estimated factors.

- Estimate these unobservable G_t out of X using 7 factor estimation methods.
- But we should decide
 - 1. m: Decision rules for number of estimated factors
 - 2. p: Bayesian Information Criteria

Results

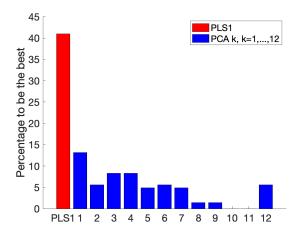
Which method tends to give the best results?

Strong Forecasting Performance of PLS1

- There are 101 combinations of all factor estimation methods and decision rules, for a target variable.
- There are 148 target variables.
- PLS1 is the best out of 101 combinations for 23 variables (around 16%), most frequently.
- The main takeaway: PLS1 gives forecasting performance very close to the best result out of 101 combinations.

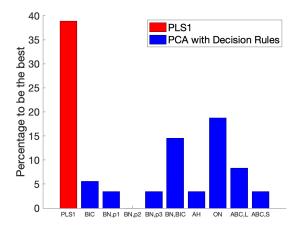
PLS1 vs PCA k, All Variables

- I compared forecasting results of PLS1 and PCA *k*, with *k* = 1, 2, ..., 12, for all target variables.
- For each variable, I found the best method out of 13 methods.
- The following is the percentage that each method was the best.



PLS1 vs PCA with Decision Rules, All Variables

• I compared forecasting results of **PLS1** and **PCA with all possible** decision rules, for all the target variables.



BN: Bai and Ng (2002), AH: Ahn and Horenstein (2013), ON: Onatski (2010), ABC: Alessi et al (2010)

References

- Ahn, S. C., & Bae, J. (2020). Forecasting with Partial Least Squares When a Large Number of Predictors Are Available. Working paper. https://www.juheebae.com
- [2] Ahn, S. C., & Horenstein, A. R. (2013). Eigenvalue ratio test for the number of factors. *Econometrica*, 81(3), 1203-1227.
- [3] Alessi, L., Barigozzi, M., & Capasso, M. (2010). Improved penalization for determining the number of factors in approximate factor models. *Statistics & Probability Letters*, 80(23-24), 1806-1813.
- [4] Bai, J., & Ng, S. (2002). Determining the number of factors in approximate factor models. *Econometrica*, 70(1), 191-221.
- [5] Onatski, A. (2010). Determining the number of factors from empirical distribution of eigenvalues. *The Review of Economics and Statistics*, 92(4), 1004-1016.