Factor-Augmented Forecasting in Big Data

Juhee Bae
University of Glasgow

NBER-NSF Time Series Conference
October, 2021

Motivation and Objectives

- Factor-augmented forecasts

1. Estimate the latent factors from data.
2. Augment the estimated factors to forecasting equations.

- Estimated factors determine forecasting accuracy.
- Objectives:

1. Evaluate comprehensively forecasting power of many factor estimation techniques, under the same forecasting framework.
2. How estimated factors affect forecasting power?
3. Which factor-augmented forecasting method tends to give the best results?

Model

Factor Models

- Factors are a few latent reference variables that drive comovements of data.
$y_{t+1}:$ a target variable being forecasted,
$x_{t}: N$ predictors
$F_{t}: k$ latent common factors in predictors.

Factor Models

- Factors are a few latent reference variables that drive comovements of data.

$$
\begin{aligned}
& y_{t+1}=\underbrace{\underbrace{\delta^{\prime}}_{1 \times m} \begin{array}{l}
G_{t} \times 1 \\
1 \times m \\
x^{\prime}
\end{array}}_{\beta^{\prime} F_{t}}+u_{t+1} \quad \underset{T \times 1}{y}=\underbrace{\underset{T \times m ~ m \times 1}{G}}_{F \beta}+\underset{T \times 1}{u} \\
& \underset{N \times 1}{x_{t}}=\underset{N \times k}{\Phi} \underset{k \times 1}{F_{t}}+\underset{N \times 1}{e_{t}} \\
& \underset{T \times N}{X}=\underset{T \times k}{F} \underset{k \times N}{\Phi^{\prime}}+\underset{T \times N}{E}
\end{aligned}
$$

y_{t+1} : a target variable being forecasted, $x_{t}: N$ predictors
$F_{t}: k$ latent common factors in predictors.

- The best forecast for y_{t+1} at t is $\beta^{\prime} F_{t}$. Let G_{t} be m factors such that $\delta^{\prime} G_{t}=\beta^{\prime} F_{t}$

Factor Models

- Factors are a few latent reference variables that drive comovements of data.

$$
\begin{aligned}
& y_{t+1}=\underbrace{\substack{\delta^{\prime} \quad G_{t} \\
1 \times m \quad m \times 1}}_{\beta^{\prime} F_{t}}+u_{t+1} \Rightarrow \quad \underset{T \times 1}{y}=\underbrace{\underset{T \times m}{G} \underset{m \times 1}{\delta}}_{F \beta}+\underset{T \times 1}{u} \\
& \underset{N \times 1}{x_{t}}=\underset{N \times k}{\Phi} \underset{k \times 1}{F_{t}}+\underset{N \times 1}{e_{t}} \quad \underset{T \times N}{X}=\underset{T \times k}{F} \underset{k \times N}{\Phi^{\prime}}+\underset{T \times N}{E}
\end{aligned}
$$

- The best forecast for y_{t+1} at t is $\beta^{\prime} F_{t}$. Let G_{t} be m factors such that $\delta^{\prime} G_{t}=\beta^{\prime} F_{t}$
- Why F_{t} and G_{t} should be distinguished?
- Our goal is NOT recovering F_{t}. What we need is a specific linear combination of $F_{\boldsymbol{t}}$, which is $\boldsymbol{\beta}^{\prime} F_{\boldsymbol{t}}$.
- Some factor estimations recover $\boldsymbol{H} \boldsymbol{F}_{t}$ with some H. We recover $\beta^{\prime} H^{-1} H F_{t}=\beta^{\prime} F_{t}$. Then $\boldsymbol{G}_{\boldsymbol{t}}=\boldsymbol{H} \boldsymbol{F}_{\boldsymbol{t}}, \delta^{\prime}=\beta^{\prime} H^{-1}$ and $\boldsymbol{m}=\boldsymbol{k}$.
- But some factor estimations recover $\beta^{\prime} F_{t}$ with G_{t} such that $\boldsymbol{m} \leq \boldsymbol{k}$.

Factor Models

- Factors are a few latent reference variables that drive comovements of data.

$$
\begin{aligned}
& y_{t+1}=\underbrace{\underset{1 \times m \quad G_{t}}{\delta^{\prime} G_{t}}}_{\beta^{\prime} F_{t}}+u_{t+1} \Rightarrow \quad \underset{T \times 1}{y}=\underbrace{\underset{T \times m}{G} \underset{\sim}{\delta} \times 1}_{F \beta}+\underset{T \times 1}{u} \\
& \underset{N \times 1}{x_{t}}=\underset{N \times k}{\Phi} \underset{k \times 1}{F_{t}}+\underset{N \times 1}{e_{t}} \\
& \underset{T \times N}{X}=\underset{T \times k}{F} \underset{k \times N}{\Phi^{\prime}}+\underset{T \times N}{E}
\end{aligned}
$$

- The best forecast for y_{t+1} at t is $\beta^{\prime} F_{t}$. Let G_{t} be m factors such that $\delta^{\prime} G_{t}=\beta^{\prime} F_{t}$
- Why F_{t} and G_{t} should be distinguished?
- Factor estimation methods estimate G_{t}, which may not be identical to F_{t}.
- \boldsymbol{k} : The number of the original factors. (dimension of F_{t})
- m : The optimal number of estimated factors by the given factor estimation method. (dimension of G_{t})

Estimation of Factors

1. Principal Component Analysis (PCA)

- $\hat{\lambda}_{1}, \ldots, \hat{\lambda}_{K}$ are the k largest eigenvalues of $S_{N T}=X^{\prime} X /(N T)$.
- $\hat{\alpha}_{j}=\sqrt{N} \times$ eigenvector corresponding to $\hat{\lambda}_{j}$.
- Let $\hat{A}=\left[\hat{\alpha}_{1}, \ldots, \hat{\alpha}_{k}\right]$, where \hat{A} is $N \times k$ matrix.
- Then PCA factors $\hat{G}_{P C A}$ are estimated as $\hat{G}_{P C A} \equiv X \hat{A} / N$
- k is the asymptotically optimal number of PCA factors. It can be estimated by many different methods (called Decision Rules).
- PCA factors are estimated without using the information on the relationship between X and y. (unsupervised method)

2. Partial Least Squares (PLS) Factors: Ahn and Bae (2020)

- Ahn and Bae (2020) provide asymptotic properties of the PLS factors:
- Note that $y=F \beta+u$ and we should recover $F \beta$.
- Let $F \beta=\Sigma_{j=\left(F_{(j)} \beta_{(j)}\right)}$, where the factors in $F_{(j)}$ have the same variances σ_{j}^{2} $\left(\sigma_{j}^{2} \neq \sigma_{j^{\prime}}^{2}\right), J$: number of distinct factor variances
- $\tilde{\alpha}_{j}=S_{N T}^{j-1} \times X^{\prime} y /\left(N^{1 / 2} T\right)$, where $S_{N T}=X^{\prime} X /(N T)$ and $\tilde{A}=\left[\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{J}\right]$.
- $\tilde{G}_{T \times J} \equiv X \tilde{A}=\underbrace{\left(F_{(1)} \beta_{(1)}, \ldots, F_{(J)} \beta_{(J)}\right)}_{(\times J)} \underset{\operatorname{B}}{\tilde{X}}+\underset{\text { negligible }}{E \tilde{i}}$
- J (number of distinct factor variances) is the asymptotically optimal number of PLS factors to use.
- Simulation results: Forecasting with $X \tilde{\alpha}_{1}$ (PLS1) very often outperforms forecasting with more PLS factors. This is so even if $J>1$.

Experiment Design

Forecasting Models

- Denote 12-month-ahead variable as y_{t+12}. Using t dated predictors, we will forecast $\hat{y}_{t+12 \mid t}$, using all the available information up to t.
- The forecast for y_{t+12} is

$$
\hat{y}_{t+12}=\hat{\theta}+\underbrace{\hat{\delta}^{\prime} \hat{G}_{t}}_{\hat{\beta}^{\prime} \hat{F}_{t}}+\sum_{j=1}^{p} \hat{\gamma}_{j}^{\prime} y_{t-j+1}
$$

where \hat{G}_{t} is the estimated factors.

- Estimate these unobservable G_{t} out of X using 7 factor estimation methods.
- But we should decide

1. m : Decision rules for number of estimated factors
2. p : Bayesian Information Criteria

Results

Which method tends to give the best results?

Strong Forecasting Performance of PLS1

- There are 101 combinations of all factor estimation methods and decision rules, for a target variable.
- There are 148 target variables.
- PLS1 is the best out of 101 combinations for 23 variables (around 16%), most frequently.
- The main takeaway: PLS1 gives forecasting performance very close to the best result out of $\mathbf{1 0 1}$ combinations.

PLS1 vs PCA k, All Variables

- I compared forecasting results of PLS1 and PCA k, with $k=1,2, \ldots, 12$, for all target variables.
- For each variable, I found the best method out of 13 methods.
- The following is the percentage that each method was the best.

PLS1 vs PCA with Decision Rules, All Variables

- I compared forecasting results of PLS1 and PCA with all possible decision rules, for all the target variables.

BN: Bai and Ng (2002), AH: Ahn and Horenstein (2013), ON: Onatski (2010), ABC: Alessi et al (2010)

References

[1] Ahn, S. C., \& Bae, J. (2020). Forecasting with Partial Least Squares When a Large Number of Predictors Are Available. Working paper. https://www.juheebae.com
[2] Ahn, S. C., \& Horenstein, A. R. (2013). Eigenvalue ratio test for the number of factors. Econometrica, 81(3), 1203-1227.
[3] Alessi, L., Barigozzi, M., \& Capasso, M. (2010). Improved penalization for determining the number of factors in approximate factor models. Statistics \& Probability Letters, 80(23-24), 1806-1813.
[4] Bai, J., \& Ng, S. (2002). Determining the number of factors in approximate factor models. Econometrica, 70(1), 191-221.
[5] Onatski, A. (2010). Determining the number of factors from empirical distribution of eigenvalues. The Review of Economics and Statistics, 92(4), 1004-1016.

