Back to the Present: Learning about the Euro Area through a Now-casting Model¹

Danilo Cascaldi-Garcia^{*} Thiago Ferreira^{*} *Federal Reserve Board *Federal Reserve Board

Domenico Giannone⁺ ⁺Amazon.com Michele Modugno* *Federal Reserve Board

NBER-NSF Time Series Conference October 15-16, 2021

¹Giannone's contribution to the paper was completed prior to the author joining Amazon. This publication and its contents are not related to Amazon and do not reflect the position of the company and its subsidiaries. The views expressed in this paper are solely the responsibility of the authors and should not be interpreted as reflecting the view of the Board of Governors of the Federal Reserve System or of any other person associated with the Federal Reserve System.

Now-casting

- Researchers and policymakers are interested in monitoring the current state of the economy in an accurate and timely manner
- However, GDP is typically measured at a quarterly frequency and is released with a substantial delay
- **Now-casting**: internally consistent econometric framework that:
 - 1. tracks and digests the daily flow of numerous **market-moving indicators**
 - 2. re-assess the state of the economy based on whether data releases were **better or worse-than-expected**

Now-casting Euro Area GDP is notably challenging

- Hard data is released with a substantial delay
- Economists **always** follow market-moving indicators including both aggregate and country-specific data
- The ECB's forecast for the euro area, for example, is built from the projections for individual countries
- However, scholars have focused only on **single-economy models** for the euro area aggregate and particular member countries:
 - Euro area: Angelini, Bańbura, and Rünstler, 2010; Camacho and Perez-Quiros, 2010; Angelini, Camba-Mendez, Giannone, Reichlin, and Rünstler, 2011; Bańbura and Rünstler, 2011; Bańbura and Modugno, 2014; Carriero, Galvao, and Kapetanios, 2019
 - Germany: Marcellino and Schumacher, 2010; Andreini, Senftleben-König, Hasenzagl, Reichlin, and Strohsal, 2020
 - France: Barhoumi, Darné, and Ferrara, 2010; Bessec and Doz, 2014
 - Multiple euro area economies: Rünstler, Barhoumi, Benk, Cristadoro, Den Reijer, Jakaitiene, Jelonek, Rua, Ruth, and Van Nieuwenhuyze, 2009; Jansen, Jin, and de Winter, 2016

This Paper

What we do:

- We model **simultaneously** the economic conditions of the euro-area aggregate and its three largest member countries—Germany, France, and Italy
- We "formalize" what market participants are doing "informally" when monitoring the economic conditions of the euro area
- Dynamic Factor Model (DFM), with euro area and country-specific data considered important by the market, and particular features of the data accommodated within our framework.

Example: In 2011, ECB Tightened Policy

- Apr-2011: rate lift-off
- head/core inflation=2.7/1.5%
- GDP growth $\approx 3\%$
- to "maintain inflation rates below, but close to, 2%"

- GDP growth: ↓ fast
- communication: similar
- Aug, Sep, Oct: steady
 GDP growth: ↓ fast
- Nov-2011: cut rate

Evolution of Estimates of Euro-Area Real GDP Growth in 2011Q3 Decomposed by Country

Choice of Variables

- We focus on data considered "important" by policymakers and market participants—market moving indicators
- Focus on main EA economies: GDP of Germany, France and Italy represent about 64% of the total euro area GDP, and 87% of the 9-country flash estimate
- Selection criteria based on the Bloomberg Relevance Index—the percentage of Bloomberg users automatically notified of a specific data release
- 58 series: EA = 13, GE = 15, FR = 16, IT = 14

Table with Full Data Description

1st Feature: Interest in aggregate Euro Area AND Major Countries

Release Delay of Variables by Country

- Data significantly delayed in comparison to U.S.
- Data from major countries earlier than EA

How we tackle it:

• Model EA, Germany, France and Italy **jointly**

Note: Shaded area represents now-cast periods (current quarter forecast).

2nd Feature: Non-Synchronicity

- EA lags GE and IT, but leads FR
- GE and IT quite synchronised
- FR lags other countries (e.g., GFC)

How we tackle it:

• Allow a **lead-lag relationship** among the euro area/countries

General Dynamic Factor Model (DFM):

$$\begin{bmatrix} y_t^{(m)} \\ y_t^{(q)} \end{bmatrix} = \begin{bmatrix} \Lambda^{(m)} & 0 & 0 & 0 & 0 \\ \Lambda^{(q)} & 2\Lambda^{(q)} & 3\Lambda^{(q)} & 2\Lambda^{(q)} & \Lambda^{(q)} \end{bmatrix} \begin{bmatrix} f_t \\ \vdots \\ f_{t-4} \end{bmatrix} + \begin{bmatrix} e_t^{(m)} \\ e_t^{(q)} \end{bmatrix}$$

$$f_t \sim VAR(p) \qquad e_t^{(m)}, e_t^{(q)} \sim AR(1)$$

$$\begin{cases} data \ y = [y^{(m)} \ y^{(q)}] \text{ may have "ragged edge"} \\ f_t \text{ is latent common factor} \\ y_t^{(m)} \text{ and } y_t^{(q)} \text{ are monthly and quarterly data, resp.} \end{cases}$$

-

-

Benchmark Model: Heterogenous DFM

$$\begin{bmatrix} \mathbf{y}_{t}^{ea} \\ \mathbf{y}_{t}^{fr} \\ \mathbf{y}_{t}^{ge} \\ \mathbf{y}_{t}^{it} \end{bmatrix} = \begin{bmatrix} \Lambda^{ea} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \Lambda^{fr} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \Lambda^{ge} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \Lambda^{it} \end{bmatrix} \begin{bmatrix} \mathbf{f}_{t}^{ea} \\ \mathbf{f}_{t}^{fr} \\ \mathbf{f}_{t}^{ge} \\ \mathbf{f}_{t}^{it} \end{bmatrix} + \begin{bmatrix} \mathbf{e}_{t}^{ea} \\ \mathbf{e}_{t}^{fr} \\ \mathbf{e}_{t}^{ge} \\ \mathbf{e}_{t}^{it} \end{bmatrix}$$
$$\mathbf{f}_{t}^{c} = [\mathbf{f}_{t}^{c} \dots \mathbf{f}_{t-4}^{c}]', \quad \text{for } \mathbf{c} = ea, ge, fr, it$$
$$\mathbf{f}_{t} = [\mathbf{f}_{t}^{ea} & \mathbf{f}_{t}^{fr} & \mathbf{f}_{t}^{ge} & \mathbf{f}_{t}^{it}]' \sim \text{VAR}(1)$$

Substantial Dynamics Across Countries

Stock and Watson (2005) Factor-Structural VAR model: decomposition between euro area-wide and country-specific shocks

Note: On the left, impulse response functions to GDP growth after an euro area-wide shock up to 24 months ahead. On the right, variance decomposition of the euro area GDP growth between the euro area-wide and the total of country-specific shocks.

EA-wide shocks induce effects that differ in size and timingCountry-specific spillovers also explain EA GDP growth

Modeling Economies Together Improves the Now-cast

Pseudo-out-of-sample RMSFEs: EA

Note: Shaded area represents now-cast periods (current quarter forecast).

Country Data Matters for Now-casting EA GDP

Note: Shaded area represents now-cast periods (current quarter forecast).

Its data releases have large effects on the model's forecasts

News Decomposition: EA 0.8 Soft data Hard data 0.7 News impact of variable x: = ave(|weight_x|) · std(FE_x) 0.6 [b.0.5] [b.b.] [b.b.] [b.b.] [b.c.] [Generally, news impact... \ldots decreasing \rightarrow backcast 0.3 News of soft data 0.2> hard data until week 4 0.1After week 4, "no news" -11-10-9 -8 -7 -6 -5 -4 -3 -2 -1 10 11 12 13 14 15 16 3 4 5 6 week (centered on beggining of the quarter)

Note: Shaded area represents now-cast periods (current quarter forecast).

Counterfactual dataset: hard data releases anticipated to match U.S. schedule

(a) EA Baseline

(b) EA Counterfactual

- Soft data remain important even under the counterfactual
- Hard data lead to larger news earlier on
- "Less news" after week 5

Model Tracked GFC Slowdown and Recovery...

for the period 2008Q2 to 2009Q3. Dots represent the realized quarterly GDP growth for the period.

... With Performance Similar to Consensus...

... and a bit better in the trough of the recession: 2008Q4-2009Q1

corresponds to a different evolution of an out-of-sample forecast of 4-quarter CDP growth of the euro area for the period 2008Q2 to 2009Q3. Dots represent the realized 4-quarter GDP growth for the period. Diamonds represent the forecast of 4-quarter GDP growth from Consensus at the time they were published.

Model Signalled 2011 Slowdown Before Consensus

Note: Now-cast evolution comes from the heterogeneous dynamic factor model (henchmark model). Each line corresponds to a different evolution of an out-of-sample forecast of 4-quarter GDP growth of the euro area for the period 2011Q4 to 2013Q2. Dots represent the realized 4-quarter GDP growth for the period. Diamonds represent the forecast of 4-quarter GDP growth from Consensus at the time they were published.

Model Signalled 2011-12 Slowdown Before ECB

Oct-2011 Jan-2012 Apr-2012 Jul-2012 Oct-2012 Jan-2013 Apr-2013 Jul-2013 Oct-2013 Jan-2014 Note: Now-cast evolution comes from the heterogeneous dynamic factor model (benchmark model). Each line corresponds to a different evolution of an out-of-sample forecast of the year-over-year GDP growth of the euro area for the period 2011Q4 to 2013Q2. Dots represent the realized year-over-year GDP growth for the period. Stars represent the forecast of year-over-year GDP growth from the ECB at the time they were published.

Sudden Stop in Activity due to COVID-19

Evolution of Estimates of Euro-Area GDP Growth in 2020Q2

- Model: daily estimates of GDP growth consistent with available data
- Soft data:
 - important for now-casting
- ECB, 18 March 2020:
 - "economic activity across the euro area would decline considerably"
- launched its (new) PEPP

2021 forecasts

Evolution of Estimates of Euro-Area GDP Growth in 2021Q1

Mar/12 Mar/19

Jan/29 Feb/05 Feb/12 Feb/19 Feb/26 Mar/05

Decomposition of Now-cast Revisions by Country

- More importantly, the model already 'knew it' since Feb/05
- 2021:Q3 Currently pointing to a 7.0% expansion (a.r.)

Conclusion

We propose a now-casting model for the euro area and its main economies with three main characteristics:

- Jointly estimates the euro area and its main economies
- Focus on market-moving indicators
- Allow for dynamic heterogeneity in data for aggregate/countries

By tackling these features, we provide now-casts comparable to private forecasters in historical events

Soft data is important for now-casting EA GDP

Weekly updates available at sites.google.com/view/euroareanowcast

Back to the Present: Learning about the Euro Area through a Now-casting Model¹

Danilo Cascaldi-Garcia^{*} Thiago Ferreira^{*} *Federal Reserve Board *Federal Reserve Board

Domenico Giannone⁺ ⁺Amazon.com Michele Modugno* *Federal Reserve Board

NBER-NSF Time Series Conference October 15-16, 2021

¹Giannone's contribution to the paper was completed prior to the author joining Amazon. This publication and its contents are not related to Amazon and do not reflect the position of the company and its subsidiaries. The views expressed in this paper are solely the responsibility of the authors and should not be interpreted as reflecting the view of the Board of Governors of the Federal Reserve System or of any other person associated with the Federal Reserve System.

Appendix

Country	Series Name	Units	Freq.	Transf.	Delay	Relevanc	e Category
EA	Gross Domestic Product	SWDA, Mil.Ch.2010.EUR	q	pca	- 30	92.5	Hard Data
EA	Unemployment Rate	SA, %	m	lin	30	67.5	Hard Data
EA	Industrial Turnover: Manufacturing	SWDA, 2015=100	m	pch	60	75	Hard Data
EA	IP: Industry excluding Construction	SA/WDA 2015=100	m	nch	45	62.5	Hard Data
EA	Industrial Production: Construction	SA/WDA 2015=100	m	nch	50	15	Hard Data
EA	PMI: Manufacturing Flash	SA 50+=Expansion	m	lin	-7	90	Soft Data
EA	PMI: Services Business Activity Flash	SA 50+=Expansion	m	lin	-7	70	Soft Data
EA	Retail Sales Volume Index	SA/WDA 2015-100	m	nch	35	50	Hard Data
EA	Consumer Confidence Indicator % Balance	SA @	m	lin	-2	75	Soft Data
EA	Business Climate Indicator	SA and day not		lin	- 2	20	Soft Data
EA	Emorts of Coods	SA /WDA Thoms FUD		nob	45	80	Howd Data
EA	Exports of Goods	CA (WDA, Thous.ECH		pen	40	02	Hard Data
EA	EU 00 and Malta New December Con Deviatoria	NCA Units	m	pen	43	25	Hard Data
EA	EU 28 exci Maita: New Passenger Car Registrations	SWDA MU Chin 0014 Emilia	m	per	20	45	Hard Data
rn.	Gross Domestic Product	SWDA MILCHI.2014.Euros	q	pca	30	69	Hard Data
FR	Registered Unemployed: Act. Seeking, Not Working	SWDA, EOP, Thous	m	pcn	25	37	Hard Data
FR	New Passenger Car Registrations	NSA, Units	m	pc1	5	90	Hard Data
FR	Industrial Production: Manufacturing	SA/WDA, 2005=100	m	pch	40	60	Hard Data
FR	Industrial Production: Construction	SA/WDA, 2005=100	m	pcn	45	60	Hard Data
FR	HH Consumption Exp: Total Manufactured Goods	SA/WDA, Bil.chn.2005.Euros	m	pch	30	17	Hard Data
FR	Business Survey: Order Books & Demand, Manuf.	SA, % Balance	m	lin	-7	11	Soft Data
FR	Turnover: Manufacturing	SWDA, 2005=100	m	pch	60	11	Hard Data
FR	PMI: Manufacturing Flash	SA, 50+=Expansion	m	lin	-7	97	Soft Data
FR	PMI: Services Flash	SA, 50+=Expansion	m	lin	-7	77	Soft Data
FR	Retail Sales Vol. excl Motor Vehic. & Motorcyc.	SWDA, 2005=100	m	pch	60	55	Hard Data
FR	Household Survey: Overall Household Conf. Ind.	SA, LT Avg=100	m	lin	-5	80	Soft Data
FR	BdF Mo Bus Survey: Business Sentiment Indicator	SA, Long-term Avg=100	m	lin	-6	51	Soft Data
FR	Composite Business Climate Indicator	NSA, LT Avg=100	m	lin	-7	11	Soft Data
FR	Total Imports including Military Equipment	SA, Mil.Euros	m	pch	65	54	Hard Data
FR	Total Exports including Military Equipment	SA, Mil.Euros	m	pch	65	51	Hard Data
GE	Gross Domestic Product	SWDA Bil.Chn.2015.Euros	q	pca	45	80	Hard Data
GE	Registered Civilian Unemployment Rate	SA. %	m	lin	0	68	Hard Data
GE	Job Vacancies [Unsubsidized]	SA. Thous	m	pch	õ	68	Hard Data
GE	Industrial Production including Construction	SA/WDA 2005=100	m	nch	38	92	Hard Data
GE	Industrial Production: Construction	SA/WDA 2005=100	m	nch	38	92	Hard Data
GE	Manufacturing Orders [Volume]	SA/WDA 2005-100	m	nch	35	91	Soft Data
GE	Industry Sales [Volume]: Manufacturing	SA/WDA 2005-100	m	nch	35	91	Hard Data
GE	New Passenr Car Registrations	NSA Number	m	nc1	15	48	Hard Data
CE	PMI: Monufacturing Flach	SA 50 - Europeien		lin	7		Soft Data
CE	PML Sources Flash	SA 501 - Expansion		lin	- 1	72	Soft Data
OF	Date II Color Volume and disc Mater Volulate	SWDA 2007 100		m	20	60	Head Data
GE	Retail Sales volume excluding Motor vehicles	SWDA, 2005=100	m	pen	30	02	Hard Data
OF	OR Commun Olimeter	SA, 2003-100		11		00	Soft Data
GE	GIK Consumer Climate	SA, 70	m	nn	-30	92	Soft Data
GE	Exports of Goods	SA, BILEUROS	m	pen	40	98	Hard Data
GE	Imports of Goods	SA, Bil.Euros	m	pcn	40	44	Hard Data
IT	Gross Domestic Product	SA/WDA, Mil.Chn.2010.EUR	q	pca	30	86	Hard Data
IT	Harmonized Unemployment Rate	SA, %	m	lin	30	56	Hard Data
IT	Production in Construction	SA, 2005=100	m	pch	48	97	Hard Data
IT	IP: Total Industry excl Construction	SA/WDA, 2005=100	m	pch	40	94	Hard Data
IT	Manufacturing Orders	SA, 2005=100	m	pch	47	62	Soft Data
IT	Industrial Turnover	SA, 2005=100	m	pch	50	62	Hard Data
IT	Passenger Car Registrations	NSA, Units	m	pc1	3	37	Hard Data
IT	PMI: Manufacturing	SA, 50+=Expansion	m	lin	3	90	Soft Data
IT	PMI: Services: Business Activity	SA, 50+=Expansion	m	lin	3	70	Soft Data
IT	Retail Sales Excl Motor Vehicles & Motorcyc. Value	SA, 2005=100	\mathbf{m}	pch	35	72	Hard Data
IT	ISAE Consumer Confidence Indicator	SA, 1980=100	m	lin	-5	90	Soft Data
IT	ISAE Business Confidence Indicator	SA, 2005=100	m	lin	-5	55	Soft Data
IT	Merchandise Exports, fob	SA, Mil.Euros	\mathbf{m}	pch	45	93	Hard Data
IT	Merchandise Imports, cif	SA, Mil.Euros	m	pch	45	74	Hard Data

Cascaldi-Garcia*, Ferreira*, Giannone+, Modugno* (*FRB, +Amazon) Learning about the Euro Area through a Now-casting Model 25

▶ Back

Alternative Models and Estimation

General Dynamic Factor Model (DFM):

$$\begin{bmatrix} \mathbf{y}_{t}^{(m)} \\ \mathbf{y}_{t}^{(q)} \end{bmatrix} = \begin{bmatrix} \Lambda^{(m)} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \Lambda^{(q)} & 2\Lambda^{(q)} & 3\Lambda^{(q)} & 2\Lambda^{(q)} & \Lambda^{(q)} \end{bmatrix} \begin{bmatrix} \mathbf{f}_{t} \\ \vdots \\ \mathbf{f}_{t-4} \end{bmatrix} + \begin{bmatrix} \mathbf{e}_{t}^{(m)} \\ \mathbf{e}_{t}^{(q)} \end{bmatrix}$$
$$\mathbf{f}_{t} \sim \text{VAR}(p) \qquad \mathbf{e}_{t}^{(m)}, \mathbf{e}_{t}^{(q)} \sim \text{AR}(1)$$

AR(1): separately for c = ea, ge, fr, it

Individual DFM's: $f_t^c \sim AR(1)$ and y_t^c , separately for c = ea, ge, fr, it

Global DFM: $f_t \sim AR(1)$ and \mathbf{y}_t , on full dataset

Estimation:

- Maximum likelihood
- EM-algorithm of Banbura and Modugno (2014)

In-sample Performance of Different Models

Three models seem to track the data reasonably well

Note: Shaded areas are euro area recession periods as dated by the Center for Economic and Policy Research (CEPR).

• Including: early-2000's, GFC, and 2011-13

Modeling Economies Together Improves the Now-cast

EA Data Matters to Now-cast Countries' GDP

(b) France

(b) France

Counterfactual dataset: soft data released jointly with countries/aggregate IP

Pseudo-out-of-sample RMSFEs: EA

Counterfactual dataset: hard data releases anticipated to match U.S. schedule

Counterfactual dataset: hard data releases anticipated to match U.S. schedule

Counterfactual dataset: hard data releases anticipated to match U.S. schedule

Gains on Modeling Dynamic Heterogeneity

Pseudo-out-of-sample RMSFEs: EA

Note: Shaded area represents now-cast periods (current quarter forecast).

Gains on Modeling Dynamic Heterogeneity

COVID-19

Sudden Stop in Activity due to COVID-19 - Germany

Sudden Stop in Activity due to COVID-19 - France

Cascaldi-Garcia*, Ferreira*, Giannone+, Modugno* (*FRB, +Amazon) Learning about the Euro Area through a Now-casting Model 40

Sudden Stop in Activity due to COVID-19 - Italy

2021:Q2 forecast

Evolution of Estimates of Euro-Area GDP Growth in 2021Q2

References

Andreini, P., Senftleben-König, C., Hasenzagl, T., Reichlin, L., and Strohsal, T. (2020). Nowcasting german gdp. Tech. rep., CEPR.

- Angelini, E., Bańbura, M., and Rünstler, G. (2010). Estimating and forecasting the euro area monthly national accounts from a dynamic factor model. *OECD Journal: Journal of Business Cycle Measurement and Analysis*, 2010/1.
- Angelini, E., Camba-Mendez, G., Giannone, D., Reichlin, L., and Rünstler, G. (2011). Short-term forecasts of euro area GDP growth.
- Bańbura, M., and Modugno, M. (2014). Maximum likelihood estimation of factor models on datasets with arbitrary pattern of missing data. *Journal of Applied Econometrics*, 29(1), 133–160.
- Bańbura, M., and Rünstler, G. (2011). A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP. *International Journal of Forecasting*, 27(2), 333–346.
- Barhoumi, K., Darné, O., and Ferrara, L. (2010). Are disaggregate data useful for factor analysis in forecasting French GDP? *Journal of Forecasting*, 29(1-2), 132–144.

References

- Bessec, M., and Doz, C. (2014). Short-term forecasting of French GDP growth using dynamic factor models. *OECD Journal: Journal of Business Cycle Measurement and Analysis*, 2013(2), 11–50.
- Camacho, M., and Perez-Quiros, G. (2010). Introducing the euro-sting: Short-term indicator of euro area growth. *Journal of Applied Econometrics*, 25(4), 663–694.
- Carriero, A., Galvao, A. B., and Kapetanios, G. (2019). A comprehensive evaluation of macroeconomic forecasting methods. *International Journal of Forecasting*, *35*(4), 1226–1239.
- Jansen, W. J., Jin, X., and de Winter, J. M. (2016). Forecasting and nowcasting real GDP: Comparing statistical models and subjective forecasts. *International Journal of Forecasting*, 32(2), 411–436.
- Marcellino, M., and Schumacher, C. (2010). Factor MIDAS for Nowcasting and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP. *Oxford Bulletin of Economics and Statistics*, 72(4), 518–550.
- Rünstler, G., Barhoumi, K., Benk, S., Cristadoro, R., Den Reijer, A., Jakaitiene, A., Jelonek, P., Rua, A., Ruth, K., and Van Nieuwenhuyze,

- C. (2009). Short-term forecasting of gdp using large datasets: a pseudo real-time forecast evaluation exercise. *Journal of forecasting*, 28(7), 595–611.
- Stock, J. H., and Watson, M. W. (2005). Understanding changes in international business cycle dynamics. *Journal of the European Economic Association*, 3(5), 968–1006.