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Challenges in systemic risk management

• Systemic risk refers to the risk of collapse of an entire complex system due to the
actions taken by the individual component entities or agents that comprise the
system. Systemic risk may occur in almost every area, for example, financial crisis,
flooding, forest fire, earthquake, market crash, economic crisis, global disease
pandemic (like COVID-19), among many others (see [6, 7]). Typically, a system
contains a number of risk sources, and once one comes first to collapse, the whole
system is affected immediately, i.e., the risk sources are competing. When a disaster
event (systemic risk) occurs, it may not be known what causes the event, i.e., its
risk source. In such a scenario, it is of significance to decompose systemic risk into
competing risks for learning risk patterns and better risk management.
• Internal risk refers to the risk from shocks that are generated and amplified within

the system. It stands in contrast to external risk, which relates to shocks that arrive
from outside the system.
• The occurrence of systemic risk is strongly correlated with extreme events.

Modeling systemic risk through modeling extreme events is one of the essential
topics in risk management.

New extreme value theory for maxima of maxima

Most recently, the accelerated max-stable distribution has been proposed by [1] to fit the
extreme values of data generated from a mixture process (i.e., from different sources),
whose mixture patterns vary with the time or sample size.
Suppose that the independent mixed sequence of random variables {Xi}ni=1 is composed
of k subsequences {Xj,i}

nj
i=1, j = 1, 2, . . . , k; {Xj,i}

nj
i=1

i.i.d.∼ Fj(x), nj → ∞ as n → ∞
and n = n1 + · · · + nk. Denote Mj,nj = max(Xj,i, i = 1, . . . , nj) as the maximum of the
jth subsequence, j = 1, 2, . . . , k. Suppose Fj ∈MDA(Hj), where Hj is one of the three
types of extreme value distritions, i.e.,Mj,nj has the following limit distribution with some
norming constants aj,nj > 0 and centering constants bj,nj,

lim
n→∞

P (aj,nj(Mj,nj − bj,nj) ≤ x) = Hj(x). (1)
DefineMn = max(M1,n1,M2,n2, . . . ,Mk,nk), i.e.,Mn is the maxima of k maxima ofMj,njs.
For k = 2, the limit distribution of Mn as n → ∞ can be determined in the following
cases:

Case 1. If a1,n1
a2,n2
→ a > 0, a1,n1(b2,n2 − b1,n1)→ b < +∞, for some constants a and b, then

P (a2,n2(Mn − b2,n2) ≤ x)→ H1(ax + b)H2(x). (2)
Case 2. If a1,n1

a2,n2
→ 0, a1,n1(b2,n2 − b1,n1)→ +∞, then

P (a2,n2(Mn − b2,n2) ≤ x)→ H2(x). (3)

Autoregressive conditional accelerated Fréchet (AcAF)

Suppose Qkt, k = 1, ..., d are latent processes, and Qt = max1≤k≤dQkt where each
Qkt = max1≤i≤pktXk,i,t is again maxima of many time series at time t. Following [9] and
[4], we assume

Qkt = µkt + σktY
1/αkt
kt , (4)

where µkt, σkt and αkt are the location, scale, and shape parameters with Ykt being a unit
Fréchet random variable with the distribution function F (y) = e−1/y, y > 0.
Specifically, we consider two latent processes Q1t and Q2t to represent maximum negative
log-returns across a group of stocks or of a particular stock’s high-frequency trading
whose price changes are driven by normal trading behavior and external information
(e.g., sentiments), respectively.
The resulting maximum negative log-returns across that group of stocks or of that
particular stock’s high-frequency trading can be expressed as Qt = max(Q1t, Q2t) =
max(max1≤i≤p1tX1,i,t,max1≤i≤p2tX2,i,t), where each {Xk,i,t}pkti=1, k = 1, 2, is a set of time
series whose price changes are due to corresponding price change driving factors, respec-
tively.

For model parsimony, we assume µ1t = µ2t = µt, σ1t = σ2t = σt, and follow the literature
to assume µt as a constant and focus on the dynamics of σt, α1t and α2t, which are the
pivotal parameters of modeling systemic risk and identifying risk sources. For the rest of
the paper, we consider the following model:

Qt = max(Q1t, Q2t) = µ + σt max(Y 1/α1t
1t , Y

1/α2t
2t ), (5)

log σt = β0 + β1 log σt−1 − β2 exp(−β3Qt−1), (6)
log α1t = γ0 + γ1 log α1,(t−1) + γ2 exp(−γ3Qt−1), (7)
log α2t = δ0 + δ1 log α2,(t−1) + δ2 exp(−δ3Qt−1), (8)

where {Y1t} and {Y2t} are sequences of independent and identically distributed (i.i.d.)
unit Fréchet random variables. Assume var(γ2 exp(−γ3Qt−1)) > var(δ2 exp(−δ3Qt−1))
for model identifiability.

Endopathic risk and exopathic risk: Definition

• When one of γ2 and δ2 is zero,
• α1t is called the tail index implied endopathic risk (for simplicity, call it endopathic risk),
• α2t is called the tail index implied exopathic risk (for simplicity, call it exopathic risk).

• When both γ2 and δ2 are zero, we define α1t as the endopathic risk, while the
exopathic risk is not defined.
• When both γ2 and δ2 are greater than zero, we refer α1t to the endopathic risk and
α2t to the exopathic risk.
• When γ1 and γ3 (or δ1 and δ3) are zero, we define α1t as the endopathic risk and α2t

as the exopathic risk.

Stationarity and ergodicity

For the AcAF model with β0, γ0, δ0, µ ∈ R, β2, β3, γ2, γ3, δ2, δ3 > 0, and 0 ≤ β1 6= γ1 6=
δ1 < 1, the latent process {σt, α1t, α2t} is stationary and geometrically ergodic.

Maximum likelihood estimation
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The conditional probability density function (p.d.f.) of Qt given (µ, σt, α1t, α2t)T is
ft(θ) = {α1tσ

α1t
t (Qt − µ)−α1t−1 + α2tσ

α2t
t (Qt − µ)−α2t−1}

× exp{−σα1t
t (Qt − µ)−α1t − σα2t

t (Qt − µ)−α2t}. (9)

By conditional independence, the log-likelihood function with observations {Qt}nt=1 is

Ln(θ) = 1
n

n∑
t=1

lt(θ) = 1
n

n∑
t=1

[
log

{
α1tσ

α1t
t (Qt − µ)−α1t−1 + α2tσ

α2t
t (Qt − µ)−α2t−1

}
− σα1t

t (Qt − µ)−α1t − σα2t
t (Qt − µ)−α2t

]
,

(10)

where {σt, α1t, α2t}nt=1 can be obtained recursively through (6)-(8), with an initial value
(σ1, α11, α21)T .

Theorem (Consistency)

Assume Θ is a compact set of the parameter space Θs. Suppose the observations
{Qt}nt=1 are generated by a stationary and ergodic model with true parameter θ0 and
θ0 is in the interior of Θ, then there exists a sequence θ̂n of local maximizer of L̃n(θ)
such that θ̂n →p θ0 and ||θ̂n − θ0|| ≤ τn, where τn = Op(n−r), 0 < r < 1/2. Hence
θ̂n is consistency.

Theorem (Asymptotic normality)

Under the conditions in Theorem 1, we have
√
n(θ̂n − θ0) d→ N(0,M−1

0 ), where θ̂n
is given in Theorem 1 and M0 is the Fisher Information matrix evaluated at θ0.
Further, the sample variance-covariance matrix of plug-in estimated score functions
{ ∂∂θlt(θ̂n)}nt=1 is a consistent estimator of M0.

Results
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Estimated tail indices and cross-sectional maximum daily negative log-returns {Qt}
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normalized) from October 8, 2015 to April 9, 2020 for BTC/USD data.
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Challenges in systemic risk management

• Systemic risk refers to the risk of collapse of an entire complex
system due to the actions taken by the individual component
entities or agents that comprise the system.
• Systemic risk may occur in almost every area, for example,

financial crisis, flooding, forest fire, earthquake, market crash,
economic crisis, global disease pandemic (like COVID-19), among
many others (see [1, 2]).
• Typically, a system contains a number of risk sources, and once

one comes first to collapse, the whole system is affected
immediately, i.e., the risk sources are competing. When a disaster
event (systemic risk) occurs, it may not be known what causes the
event, i.e., its risk source. In such a scenario, it is of significance to
decompose systemic risk into competing risks for learning risk
patterns and better risk management.
• Internal risk refers to the risk from shocks that are generated and

amplified within the system. It stands in contrast to external risk,
which relates to shocks that arrive from outside the system.
• The occurrence of systemic risk is strongly correlated with extreme

events. Modeling systemic risk through modeling extreme events is
one of the essential topics in risk management.

Contributions of the new work

1 First and foremost, we propose a new decoupling risk framework
to handle systemic risk. We decouple the systemic risk into
endopathic risk and exopathic risk, which is the first based on our
knowledge in the field.

2 Second, the empirical analysis shows our model’s superior
performance in two financial markets: the U.S. stock market and
the Bitcoin trading market.

3 For the U.S. stock market, we find that exopathic risks are more
volatile than endopathic risks. Under normal market conditions,
endopathic risks dominate the stock market price fluctuations,
while under turbulent market conditions, exopathic risks dominate.

4 For the Bitcoin trading market, endopathic risks are more volatile
than exopathic risks. Exopathic risks dominate the cryptocurrency
market price fluctuations under normal market conditions, while
under turbulent market conditions, endopathic risks dominate.
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Classical extreme value theory

According to the Fisher-Tippett-Gnedenko Theorem ([2]; [3]), under
certain conditions, the sample maxima can be accurately approximately
modeled by a GEV distribution

Gµ,σ,ξ (x) =



exp
−

1 + ξx−µσ

−1/ξ, ξ 6= 0,

exp
− exp(−x−µσ )

, ξ = 0
with 1+ξ(x−µ)/σ > 0, the location parameter µ ∈ R, scale parameter
σ > 0, and shape/tail parameter ξ ∈ R.

New extreme value theory

Most recently, the accelerated max-stable distribution has been proposed
by [1] to fit the extreme values of data generated from a mixture process
(i.e., from different sources), whose mixture patterns vary with the time
or sample size.
Suppose that the independent mixed sequence of random variables
{Xi}ni=1 is composed of k subsequences {Xj,i}

nj
i=1, j = 1, 2, . . . , k;

{Xj,i}
nj
i=1

i.i.d.∼ Fj(x), nj →∞ as n→∞ and n = n1 + · · · + nk.

Maxima of maxima

Denote Mj,nj = max(Xj,i, i = 1, . . . , nj) as the maximum of the jth
subsequence, j = 1, 2, . . . , k. Suppose Fj ∈ MDA(Hj), where Hj is
one of the three types of extreme value distritions, i.e., Mj,nj has the
following limit distribution with some norming constants aj,nj > 0 and
centering constants bj,nj,

lim
n→∞P (aj,nj(Mj,nj − bj,nj) ≤ x) = Hj(x). (1)

Define Mn = max(M1,n1,M2,n2, . . . ,Mk,nk), i.e., Mn is the maxima of k
maxima of Mj,njs. For k = 2, the limit distribution of Mn as n → ∞
can be determined in the following cases:

Case 1. If a1,n1
a2,n2
→ a > 0, a1,n1(b2,n2 − b1,n1)→ b < +∞, for some constants

a and b, then
P (a2,n2(Mn− b2,n2) ≤ x)→ H1(ax + b)H2(x). (2)

Case 2. If a1,n1
a2,n2
→ 0, a1,n1(b2,n2 − b1,n1)→ +∞, then

P (a2,n2(Mn− b2,n2) ≤ x)→ H2(x). (3)
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Autoregressive conditional accelerated Fréchet

• Qkt, k = 1, ..., d are latent processes with Qkt = max1≤i≤pktXk,i,t.
• Qt = max1≤k≤dQkt

• Following [1] and [2], we assume
Qkt = µkt + σktY

1/αkt
kt , (1)

where µkt, σkt and αkt are the location, scale, and shape
parameters with Ykt being a unit Fréchet random variable with the
distribution function F (y) = e−1/y, y > 0.

1 Consider d = 2, and Q1t and Q2t to represent maximum negative
log-returns across a group of stocks or of a particular stock’s
high-frequency trading whose price changes are driven by normal
trading behavior and external information (e.g., sentiments),
respectively.

For the rest of the presentation, we consider the following model:
Qt = max(Q1t, Q2t) = µ + σtmax(Y 1/α1t

1t , Y
1/α2t

2t ), (2)
log σt = β0 + β1 log σt−1− β2 exp(−β3Qt−1), (3)

logα1t = γ0 + γ1 logα1,(t−1) + γ2 exp(−γ3Qt−1), (4)
logα2t = δ0 + δ1 logα2,(t−1) + δ2 exp(−δ3Qt−1), (5)

where {Y1t} and {Y2t} are sequences of independent and identi-
cally distributed (i.i.d.) unit Fréchet random variables. Assume
var(γ2 exp(−γ3Qt−1)) > var(δ2 exp(−δ3Qt−1)) for model identifiabil-
ity.

Endopathic risk and exopathic risk: Definition

• When one of γ2 and δ2 is zero,
• α1t is called the tail index implied endopathic risk (for simplicity, call it

endopathic risk),
• α2t is called the tail index implied exopathic risk (for simplicity, call it

exopathic risk).
• When both γ2 and δ2 are zero, we define α1t as the endopathic

risk, while the exopathic risk is not defined.
• When both γ2 and δ2 are greater than zero, we refer α1t to the

endopathic risk and α2t to the exopathic risk.
• When γ1 and γ3 (or δ1 and δ3) are zero, we define α1t as the

endopathic risk and α2t as the exopathic risk.
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Stationarity and ergodicity

For the AcAF model with β0, γ0, δ0, µ ∈ R, β2, β3, γ2, γ3, δ2, δ3 > 0, and
0 ≤ β1 6= γ1 6= δ1 < 1, the latent process {σt, α1t, α2t} is stationary and
geometrically ergodic.

Maximum likelihood estimation

θ0 = (β0
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The conditional probability density function (p.d.f.) of Qt given
(µ, σt, α1t, α2t)T is

ft(θ) = {α1tσ
α1t
t (Qt− µ)−α1t−1 + α2tσ

α2t
t (Qt− µ)−α2t−1}

× exp{−σα1t
t (Qt− µ)−α1t − σα2t

t (Qt− µ)−α2t}. (1)

By conditional independence, the log-likelihood function with observations
{Qt}nt=1 is

Ln(θ) = 1
n

n∑
t=1
lt(θ) = 1

n

n∑
t=1

 log
{
α1tσ

α1t
t (Qt− µ)−α1t−1 + α2tσ

α2t
t (Qt− µ)−α2t−1}

− σα1t
t (Qt− µ)−α1t − σα2t

t (Qt− µ)−α2t

,
(2)

where {σt, α1t, α2t}nt=1 can be obtained recursively, with an initial value
(σ1, α11, α21)T .

Theorem (Consistency)

Assume Θ is a compact set of the parameter space Θs. Suppose the obser-
vations {Qt}nt=1 are generated by a stationary and ergodic model with true
parameter θ0 and θ0 is in the interior of Θ, then there exists a sequence
θ̂n of local maximizer of L̃n(θ) such that θ̂n →p θ0 and ||θ̂n − θ0|| ≤ τn,
where τn = Op(n−r), 0 < r < 1/2. Hence θ̂n is consistency.

Theorem (Asymptotic normality)

Under the conditions in Theorem 1, we have
√
n(θ̂n − θ0) d→ N(0,M−1

0 ),
where θ̂n is given in Theorem 1 and M0 is the Fisher Information matrix
evaluated at θ0. Further, the sample variance-covariance matrix of plug-in
estimated score functions { ∂∂θlt(θ̂n)}

n
t=1 is a consistent estimator of M0.

Proposition (Asymptotic uniqueness)

Denote Vn = {θ ∈ Θ|µ ≤ cQn,1 + (1 − c)µ0} where Qn,1 = min1≤t≤nQt,
under the conditions in Theorem 1, for any fixed 0 < c < 1. There exists
a sequence of θ̂n = arg maxθ∈Vn L̃n(θ) such that, θ̂n→p θ0, ||θ̂n − θ0|| ≤ τn
where τn = Op(n−r) with 0 < r < 1/2, and

P (θ̂n is the unique global maximizer of L̃n(θ) over Vn)→ 1.
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Results
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Discussions

• This paper develops a new autoregressive conditional accelerated
Fréchet (AcAF) model for decoupling systemic financial risk into
endopathic and exopathic competing risks.
• The AcAF model can be extended to many other aspects. One

potential extension is to assume a dynamic structure for the
location parameter µ. Another future direction is to extend two
risk sources to multiple sources of risk with the construction of a
flexible multivariate dynamic tail risk model.
• The AcAF model can be applied to diversified areas as long as

decoupling systemic risks into competing endopathic risks and
exopathic risks is concerned. These areas include systemic risks in
social, political, economic, financial, market, regional, global,
environmental, transportation, epidemiological, material, chemical,
and physical systems.
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