Simultaneous Inference of a Partially Linear Model in Time Series

Kun Ho Kim
Yeshiva University

October 16, 2021

Co-authors

- Likai Chen (Washington University in St Louis)
- Tianwei Zhou (Washington University in St Louis)

Contributions

- Simultaneous inference of the non-parametric part of a partially linear model in "time series" is conducted when the non-parametric component is a "multivariate" unknown function.
- The developed methodology is applied to two examples in time series: (1) the forward premium regression and (2) a factor asset pricing model.

Model

- Partially linear time series model:

$$
Y_{i}=Z_{i}^{\top} \boldsymbol{\beta}+\mu\left(X_{i}\right)+\epsilon_{i}, \quad i=1, \cdots, T
$$

where ϵ_{i} is a random error with some general dependence structure. The goal of this study is to perform specification test for the null $H_{0}: \mu(\cdot)=\mu_{\theta}(\cdot)$ for some $\theta \in \Theta$. Here $\mu_{\theta}(\cdot)$ is some parametric function with unknown θ.

Assumption 1

- Let the error process be:

$$
\epsilon_{i}=\sum_{k=0}^{\infty} a_{k} \zeta_{i-k}
$$

where ζ_{i} is an IID process. We require an algebraic decay rate of temporal dependence: For $\gamma>0$ and $c_{s}>0$, let

$$
\sum_{k \geq i}\left|a_{k}\right| \leq c_{s} i^{-\gamma}, i \geq 1, \gamma>0, c_{s}>0
$$

Assumption 2

- The kernel function $K(\cdot)$ is defined on $\mathbb{I}=[-1,1]^{d}$ and is continuously differentiable up to order two.
- Assume $\max _{x \in \mathbb{I}}|K(x)|<\infty$ and $\int_{\mathbb{I}} K(x) d x=1$. Also, assume $K(x)$ has its first-order derivative with $\sup _{x \in \mathbb{I}} \max _{1 \leq i \leq d}\left|\partial_{i} K(x)\right|<\infty$.
- Assume the bandwidth parameter $h \rightarrow 0$ and $h^{d} n \rightarrow \infty$.

Assumption 3

- Let $g\left(x \mid \mathcal{F}_{i-1}\right)$ and $X_{i j}$ have a finite q-th moment, for $q>2$. Define

$$
\begin{aligned}
\theta_{k, q}= & \max _{x \in \mathbb{R}^{d}}\left\|g\left(x \mid \mathcal{F}_{i}\right)-g\left(x \mid \mathcal{F}_{i,\{i-k\}}\right)\right\|_{q} \\
& +\left\|\max _{1 \leq j \leq d}\left|X_{i j}-X_{i j,\{i-k\}}\right|\right\|_{q}
\end{aligned}
$$

- Let $\sup _{m \geq 0} m^{\alpha^{\prime}} \sum_{k \geq m} \theta_{k, q}<\infty$ for some $\alpha^{\prime}>0$.

Assumption 4

- Let Ω be some compact region. For some constants $c_{g}, c_{g}^{\prime}>0$, assume

$$
c_{g} \leq \inf _{x \in \Omega} g(x) \leq \sup _{x \in \Omega} g(x) \leq c_{g}^{\prime}
$$

Additionally, assume $\sup _{x \in \Omega} \max _{1 \leq j \leq d}\left|\partial g(x) / \partial x_{j}\right|<\infty$.

- Assume, for any $s, t \in \Omega$, $\sup _{i_{1}, i_{2}}\left|g_{i_{1}, i_{2}}\left(s, t \mid \mathcal{F}_{i-1}\right)\right| \leq c$ for some constant c. In addition, assume

$$
\begin{aligned}
& \sup _{i_{1}, i_{2}}\left(\max _{1 \leq j \leq d}\left|\frac{\partial g_{i_{1}, i_{2}}\left(s, t \mid \mathcal{F}_{i-1}\right)}{\partial s_{j}}\right|\right. \\
&\left.+\max _{1 \leq j \leq d}\left|\frac{\partial g_{i_{1}, i_{2}}\left(s, t \mid \mathcal{F}_{i-1}\right)}{\partial t_{j}}\right|\right) \leq c^{\prime}
\end{aligned}
$$

for some constant $c^{\prime}>0$.

Assumption 5

- Assume that there exists some bounded function $h(\cdot)$: $\mathbb{R}^{d} \rightarrow \mathbb{R}^{\ell}$, such that

$$
Z_{i}=h\left(X_{i}\right)+u_{i}
$$

where $h(\cdot)$ is Lipschitz-continuous and u_{i} are vectors in \mathbb{R}^{ℓ} satisfying

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left(u_{i} u_{i}^{\top}\right)=B
$$

where B is a positive definite matrix.

- In addition, let

$$
\lim \sup _{n \rightarrow \infty} \frac{1}{\sqrt{n} \log n} \max _{1 \leq m \leq n}\left|\sum_{k=1}^{m} u_{j_{k}}\right|_{2}<\infty
$$

for any permutation j_{1}, \ldots, j_{n} of the integers $1,2, \ldots, n$. Moreover,

$$
\max _{1 \leq i \leq n}\left|u_{i}\right|_{2} \leq C
$$

Simultaneous Confidence Region

- Estimation of $\mu(\cdot)$ is achieved by:

$$
\hat{\mu}_{R}(s)=\underset{\theta}{\operatorname{argmin}} \frac{1}{n h^{d}} \sum_{i=1}^{n} K\left(\frac{s-X_{i}}{h}\right)\left(Y_{i}-Z_{i}^{\top} \hat{\boldsymbol{\beta}}_{R}-\theta\right)^{2}
$$

where $\hat{\boldsymbol{\beta}}_{R}$ is the Robinson estimate (Robinson, 1988) of $\boldsymbol{\beta}$. This leads to:

$$
\hat{\mu}_{R}(s)=\frac{1}{n h^{d} \hat{g}(s)} \sum_{i=1}^{n} K\left(\frac{s-X_{i}}{h}\right)\left(Y_{i}-Z_{i}^{\top} \hat{\boldsymbol{\beta}}_{R}\right)
$$

with

$$
\hat{g}(s)=\frac{1}{n h^{d}} \sum_{i=1}^{n} K\left(\frac{s-X_{i}}{h}\right) .
$$

Simultaneous Confidence Region

- Let S^{2} be the the long-run variance of ϵ_{i} and $w_{j}\left(x_{i}\right)$ be the kernel weight function defined by:

$$
w_{j}\left(x_{i}\right)=\frac{K\left(\frac{x_{i}-X_{j}}{h}\right)}{\sum_{k=1}^{n} K\left(\frac{x_{i}-X_{k}}{h}\right)}
$$

- Denote $G_{i, .}=\left(G_{i, 1}, \ldots, G_{i, n}\right)$, where $G_{i, j}$ is defined by $G_{i, j}=w_{j}\left(x_{i}\right) \cdot S$.

Asymptotic results

- Let $\eta \in \mathbb{R}^{n}$ be a standard normal random vector. If we consider $\delta=n^{-(d+1) / d}$, then $N=O\left(1 / \delta^{d}\right)=O\left(n^{d+1}\right)$. Under Assumptions 1-4, if $\log (n)^{1 / 2} h^{d+2} n \rightarrow 0$ and $(d+1) / q-\gamma+\log _{n} \log (n)^{1 / 2}<0$, we have:

$$
\sup _{u \in \mathbb{R}}\left|\mathbb{P}\left(\sup _{x \in \Omega}|\hat{\mu}(x)-\mu(x)|<u\right)-\mathbb{P}\left(\max _{1 \leq i \leq N}\left|G_{i, \cdot} \eta\right|<u\right)\right| \lesssim \Delta
$$

where $\hat{\mu}(x)$ is an "infeasible" estimate based on the true $\boldsymbol{\beta}$ and

$$
\begin{aligned}
\Delta=\left(h^{d} n\right)^{-1 / 6}(\log N n)^{7 / 6}+ & \left(n^{2 / q} /\left(h^{d} n\right)\right)^{1 / 3} \\
& +\log (N n)^{q}\left(h^{d} n\right)^{-q / 2+1}+C_{n}
\end{aligned}
$$

Asymptotic results

- Under the assumptions of Assumptions 1-5, if $\log (n)^{1 / 2} h^{d+2} n \rightarrow 0$ and $(d+1) / q-\gamma+\log _{n} \log (n)^{1 / 2}<0$, we have:

$$
\sup _{u \in \mathbb{R}}\left|\mathbb{P}\left(\sup _{x \in \Omega}\left|\hat{\mu}_{R}(x)-\mu(x)\right|<u\right)-\mathbb{P}\left(\max _{1 \leq i \leq N}\left|G_{i, \eta}\right|<u\right)\right| \lesssim \Delta
$$

where $\hat{\mu}_{R}(x)$ is $\hat{\mu}(x)$ with the Robinson estimate (1988) in it.

Simultaneous Confidence Region

- Then, the p-th percentile simultaneous confidence interval for $\mu(\cdot)$ can be shown by:

$$
\hat{\mu}_{R}(x)-z_{p} \leq \mu(x) \leq \hat{\mu}_{R}(x)+z_{p}
$$

where z_{p} is the p-th quantile for the $\max _{i}\left|G_{i, \eta} \eta\right|$ and η is a standard Gaussian random vector.

Forward Premium Regression

- Consider the monetary model in Mark (1995):

$$
s_{t+1}-s_{t}=\alpha+\beta\left(x_{t}-s_{t}\right)+u_{t+1}
$$

where s_{t} is log of monthly spot exchange rate at time t and x_{t} is the equilibrium level of the spot exchange rate
$x_{t}:=m_{t}-m_{t}^{*}-\lambda\left(y_{t}-y_{t}^{*}\right)$ with m_{t} and y_{t} being log of domestic money stock and log of monthly production, respectively.

- We let $\lambda=1$. One can rewrite the model as:

$$
s_{t+1}-s_{t}=\alpha+\beta\left(x_{t}-f_{1, t}\right)+\beta\left(f_{1, t}-s_{t}\right)+u_{t+1}
$$

where $f_{1, t}$ is log of monthly forward exchange rate with one-month maturity at time t.

Forward Premium Regression

- A flexible way to model the risk premium is:

$$
\begin{equation*}
s_{t+1}-s_{t}=\mu\left(x_{t}-f_{1, t}\right)+\beta\left(f_{1, t}-s_{t}\right)+u_{t+1} \tag{1}
\end{equation*}
$$

where $\mu(\cdot)$ is some unknown function.

- The theory of Uncovered Interest Parity (UIP) implies $\mu(\cdot)=0$, while numerous empirical studies actually show $\mu(\cdot) \neq 0$. Interestingly, (1) is a special case of the partially linear model framework. Hence the methodology developed here can be readily applied to decide whether or not the UIP condition holds.

Forward Premium Regression

Conditional factor model

- Consider the single-factor asset pricing model:

$$
\begin{equation*}
\boldsymbol{R}_{i t}=\alpha\left(X_{t}\right)+\beta \boldsymbol{R}_{t}^{m}+\zeta_{i t} \tag{2}
\end{equation*}
$$

where $R_{i t}$ is the excess return of momentum portfolio and R_{t}^{m} is the excess return on the value-weighted market index portfolio at t, respectively.

- Here $\alpha(\cdot)$ is the pricing error of the factor model that depends on X_{t}, a vector of random variables. The pricing error in (2) is likely to be time-varying and its variation is related to X_{t}. We let X_{t} contain the size factor or the book-to-market ratio, etc.

Conditional factor model

- To that end, we consider a bivariate pricing error:

$$
\begin{equation*}
R_{i t}=\alpha\left(S M B_{t}, H M L_{t}\right)+\beta R_{t}^{m}+\zeta_{i t} \tag{3}
\end{equation*}
$$

where $S M B_{t}$ and $H M L_{t}$ represent the size and book-to-market factors, respectively.

- Given that (3) is a special case of the partially linear model, our methodology readily applies here. By constructing a SCR for the unknown $\alpha(\cdot, \cdot)$, one can conduct simultaneous inference for the zero-pricing-error hypothesis for the factor model in (3).

Conditional factor model

Figure:

Conditional factor model

(a) 5th-percentile of size

(c) 95th-percentile of size

Conditional factor model

(a) 5th-percentile of B / M ratio

(b) 50th-percentile of B / M ratio

Summary

- We illustrate how to construct the simultaneous confidence region (SCR) for the multivariate unknown function in time series.
- The inference of the model is conducted through the construction of SCR, which is a multi-dimensional extension of the two-dimensional uniform confidence band.
- The zero-risk-premium hypothesis for GBP/USD is narrowly rejected at a 5 percent level, mainly due to the surge in the risk premium estimate when the fundamental takes on a large value.
- The hypothesis of zero-pricing-error is also rejected for the factor model, due to the underlying non-linear nature.

