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Contributions

I Simultaneous inference of the non-parametric part of a
partially linear model in “time series" is conducted when
the non-parametric component is a “multivariate" unknown
function.

I The developed methodology is applied to two examples in
time series: (1) the forward premium regression and (2) a
factor asset pricing model.
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Model

I Partially linear time series model:

Yi = Z>i β + µ(Xi) + εi , i = 1, · · · ,T ,

where εi is a random error with some general dependence
structure. The goal of this study is to perform specification test
for the null H0 : µ(·) = µθ(·) for some θ ∈ Θ. Here µθ(·) is some
parametric function with unknown θ.
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Assumption 1

I Let the error process be:

εi =
∞∑

k=0

akζi−k ,

where ζi is an IID process. We require an algebraic decay rate
of temporal dependence: For γ > 0 and cs > 0, let∑

k≥i

|ak | ≤ cs i−γ , i ≥ 1, γ > 0, cs > 0
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Assumption 2

I The kernel function K (·) is defined on I = [−1,1]d and is
continuously differentiable up to order two.

I Assume maxx∈I |K (x)| <∞ and
∫
I K (x)dx = 1. Also,

assume K (x) has its first-order derivative with
supx∈I max1≤i≤d |∂iK (x)| <∞.

I Assume the bandwidth parameter h→ 0 and hdn→∞.
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Assumption 3

I Let g(x |Fi−1) and Xij have a finite q-th moment, for q > 2.
Define

θk ,q = max
x∈Rd
‖g(x |Fi)− g(x |Fi,{i−k})‖q

+‖ max
1≤j≤d

|Xij − Xij,{i−k}|‖q.

I Let supm≥0 mα′∑
k≥m θk ,q <∞ for some α′ > 0.
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Assumption 4

I Let Ω be some compact region. For some constants
cg , c′g > 0, assume

cg ≤ inf
x∈Ω

g(x) ≤ sup
x∈Ω

g(x) ≤ c′g .

Additionally, assume supx∈Ω max1≤j≤d |∂g(x)/∂xj | <∞.

I Assume, for any s, t ∈ Ω, supi1,i2 |gi1,i2(s, t |Fi−1)| ≤ c for
some constant c. In addition, assume

sup
i1,i2

(
max

1≤j≤d

∣∣∣∣∂gi1,i2(s, t | Fi−1)

∂sj

∣∣∣∣
+ max

1≤j≤d

∣∣∣∣∂gi1,i2(s, t | Fi−1)

∂tj

∣∣∣∣ ) ≤ c′,

for some constant c′ > 0.
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Assumption 5
I Assume that there exists some bounded function h(·):

Rd → R`, such that

Zi = h(Xi) + ui ,

where h(·) is Lipschitz-continuous and ui are vectors in R`
satisfying

lim
n→∞

1
n

n∑
i=1

(uiu>i ) = B,

where B is a positive definite matrix.

I In addition, let

lim sup
n→∞

1√
n log n

max
1≤m≤n

|
m∑

k=1

ujk |2 <∞,

for any permutation j1, ..., jn of the integers 1,2, ...,n.
Moreover,

max
1≤i≤n

|ui |2 ≤ C.
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Simultaneous Confidence Region

I Estimation of µ(·) is achieved by:

µ̂R(s) = argmin
θ

1
nhd

n∑
i=1

K
(

s − Xi

h

)(
Yi − Z>i β̂R − θ

)2
,

where β̂R is the Robinson estimate (Robinson, 1988) of β. This
leads to:

µ̂R(s) =
1

nhd ĝ(s)

n∑
i=1

K
(

s − Xi

h

)(
Yi − Z>i β̂R

)
,

with

ĝ(s) =
1

nhd

n∑
i=1

K
(

s − Xi

h

)
.
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Simultaneous Confidence Region

I Let S2 be the the long-run variance of εi and wj(xi) be the
kernel weight function defined by:

wj(xi) =
K
(

xi−Xj
h

)
∑n

k=1 K
(

xi−Xk
h

)
I Denote Gi,· = (Gi,1, ...,Gi,n), where Gi,j is defined by

Gi,j = wj(xi) · S.
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Asymptotic results

I Let η ∈ Rn be a standard normal random vector. If we
consider δ = n−(d+1)/d , then N = O(1/δd ) = O(nd+1).
Under Assumptions 1–4, if log(n)1/2hd+2n→ 0 and
(d + 1)/q − γ + logn log(n)1/2 < 0, we have:

sup
u∈R

∣∣∣∣P(sup
x∈Ω

∣∣µ̂(x)− µ(x)
∣∣ < u

)
− P

(
max

1≤i≤N

∣∣Gi,·η
∣∣ < u

)∣∣∣∣ . ∆,

where µ̂(x) is an “infeasible" estimate based on the true β and

∆ = (hdn)−1/6(log Nn)7/6 + (n2/q/(hdn))1/3

+ log(Nn)q(hdn)−q/2+1 + Cn
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Asymptotic results

I Under the assumptions of Assumptions 1–5, if
log(n)1/2hd+2n→ 0 and (d + 1)/q − γ + logn log(n)1/2 < 0,
we have:

sup
u∈R

∣∣∣∣P(sup
x∈Ω

∣∣µ̂R(x)− µ(x)
∣∣ < u

)
− P

(
max

1≤i≤N

∣∣Gi,·η
∣∣ < u

)∣∣∣∣ . ∆,

where µ̂R(x) is µ̂(x) with the Robinson estimate (1988) in it.
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Simultaneous Confidence Region

I Then, the p-th percentile simultaneous confidence interval
for µ(·) can be shown by:

µ̂R(x)− zp ≤ µ(x) ≤ µ̂R(x) + zp,

where zp is the p-th quantile for the maxi |Gi,·η| and η is a
standard Gaussian random vector.
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Forward Premium Regression

I Consider the monetary model in Mark (1995):

st+1 − st = α + β(xt − st ) + ut+1

where st is log of monthly spot exchange rate at time t and xt is
the equilibrium level of the spot exchange rate
xt := mt −m∗t − λ(yt − y∗t ) with mt and yt being log of domestic
money stock and log of monthly production, respectively.

I We let λ = 1. One can rewrite the model as:
st+1 − st = α + β(xt − f1,t ) + β(f1,t − st ) + ut+1

where f1,t is log of monthly forward exchange rate with
one-month maturity at time t .
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Forward Premium Regression

I A flexible way to model the risk premium is:
st+1 − st = µ(xt − f1,t ) + β(f1,t − st ) + ut+1 (1)

where µ(·) is some unknown function.

I The theory of Uncovered Interest Parity (UIP) implies
µ(·) = 0, while numerous empirical studies actually show
µ(·) 6= 0. Interestingly, (1) is a special case of the partially
linear model framework. Hence the methodology
developed here can be readily applied to decide whether
or not the UIP condition holds.
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Forward Premium Regression
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Conditional factor model

I Consider the single-factor asset pricing model:

Rit = α(Xt ) + βRm
t + ζit (2)

where Rit is the excess return of momentum portfolio and Rm
t is

the excess return on the value-weighted market index portfolio
at t , respectively.

I Here α(·) is the pricing error of the factor model that
depends on Xt , a vector of random variables. The pricing
error in (2) is likely to be time-varying and its variation is
related to Xt . We let Xt contain the size factor or the
book-to-market ratio, etc.
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Conditional factor model

I To that end, we consider a bivariate pricing error:

Rit = α(SMBt , HMLt ) + βRm
t + ζit (3)

where SMBt and HMLt represent the size and book-to-market
factors, respectively.

I Given that (3) is a special case of the partially linear
model, our methodology readily applies here. By
constructing a SCR for the unknown α(·, ·), one can
conduct simultaneous inference for the zero-pricing-error
hypothesis for the factor model in (3).
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Conditional factor model
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Conditional factor model
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Conditional factor model
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Summary

I We illustrate how to construct the simultaneous confidence
region (SCR) for the multivariate unknown function in time
series.

I The inference of the model is conducted through the
construction of SCR, which is a multi-dimensional
extension of the two-dimensional uniform confidence band.

I The zero-risk-premium hypothesis for GBP/USD is
narrowly rejected at a 5 percent level, mainly due to the
surge in the risk premium estimate when the fundamental
takes on a large value.

I The hypothesis of zero-pricing-error is also rejected for the
factor model, due to the underlying non-linear nature.
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