Identifying High-Frequency Shocks with a Bayesian Mixed Frequency VAR Approach

Alessia Paccagnini¹ Fabio Parla^{2*}

¹University College Dublin & CAMA

²Bank of Lithuania

NBER-NSF TIME SERIES CONFERENCE

October 2021

^{*}The views expressed in this paper are those of the authors and do not necessarily reflect the views of the Bank of Lithuania or the ESCB.

Motivation

- ▶ Uncertainty induced by COVID-19 has a huge impact on business cycle.
- Financial Uncertainty (VIX) is high-frequency and business cycle variables are low-frequency.

How can we identify a high-frequency uncertainty shock on US macroeconomic variables?

Contribution

- ► Research question: "How can we identify a high-frequency shock on low-frequency variables?"
- What we do: We assess the propagation mechanism of VIX uncertainty shock in U.S. over 1990M1-2019M12, using data sampled at a different frequency.
- ► We introduce a new **High-Frequency Identification Approach**.
- We study **Temporal Aggregation Bias** induced by relying on a standard (common low-frequency) VAR.
- ► How we do it: We estimate a Mixed-frequency VAR (Ghysels, 2016 JOE) by adopting Bayesian techniques.
 - We use a Normal-Inverse Wishart prior for mixed-frequency VARs (Götz et al., 2016 JOE) for shock identification.
- Spoiler: Mixed-Frequency matters!

Data and empirical strategy

- ▶ Baseline MF-VARs (estimated over 1990M1 2019M12) fitted to:
 - 1. VIX (weekly) and U.S. macro variables (monthly). weekly VIX
 - 2. VIX (daily) and U.S. macro variables (monthly): each month has 20 observations as in Götz et al. (2016).
- ► The set of U.S. business cycle variables includes:
 - Consumer price index CPI (ΔIn)
 - Industrial production index IP (ΔIn)
 - Real personal consumption expenditures PCE (ΔIn)
 - Effective federal funds rate FFR
- Lag length is set to 3 (Akaike criterion). Robustness check: 6 and 12 lags.
- Cholesky decomposition with VIX ordered first (publication lags) as in Ferrara and Guérin (2018).
- ► Size of the COVID-19 uncertainty shock calibrated as in Caggiano et al., (2020): 5σ of VIX shock identified over 1990M1-2019M12

Weekly IRF - MF-VAR(3) II Priors

Figure 1: Aggregated weekly responses. Median response (red line) with 68% (red shading) and 90% (gray shading) CI. IRFs from standard VAR(3) are reported (blue lines).

Daily IRF - MF-VAR(3) II Prior

Figure 2: Aggregated daily responses. Median response (red line) with 68% (red shading) and 90% (gray shading) CI. IRFs from standard VAR(3) are reported (blue lines).

Robustness checks

- We perform several robustness checks.
 - Number of Lags. 6 and 12 lags
 - Extended set of macroeconomic variables. More variables Shadow short rate

 - Excluding Global Financial Crisis.
 - Pre-treatment of High-Frequency Variable.
- ► The Current COVID-19-induced Uncertainty: 1990M1-2020M11 time span.
 - Weekly vs. monthly. Aggregated IRF
 - Daily vs. monthly. Daily IRF
 Aggregated daily IRF

Wrapping Up

- ► This paper investigates the effects of a high-frequency shock on low-frequency variables using mixed-frequency data.
- We introduce a novel Bayesian Mixed-Frequency VAR model applied to structural analysis.
- We identify the VIX shock on US macro variables as illustrative example.
- ▶ **General Main Result**: Detrimental effect of uncertainty on real economic activity (i.e. Bloom, 2009; Caldara et al., 2016; Caggiano et al., 2017) in both common and mixed-frequency.
- Particular Main Result: Moderate evidence of temporal aggregation bias, more pronounced in case of large differences in sampling frequencies (HFvsLF).
- ▶ Policy Implications: Temporal Aggregation Bias and the timing of the shocks matter in the response of low frequency variables (Ferrara and Guérin, 2018).

Questions Time

Appendix

Appendix: Weekly series of VIX $\, { m I} \,$

- ► Following Ferrara and Guérin (2018), we construct a weekly series of VIX such that each month contains 4 weeks.
- ▶ Given the number of traded days (D_t) within a month, the weekly observations can be computed as follows:
 - First week extends from day 1 to $D_t 15$.
 - Second week extends from $D_t 14$ to $D_t 10$.
 - Third week extends from $D_t 9$ to $D_t 5$.
 - Fourth week extends from $D_t 4$ to D_t .
- We use the last observation for each week to construct the weekly series of VIX.

Appendix: Weekly series of VIX $\, \mathrm{II} \,$

Figure A.1: VIX (weekly frequency). 1990M1 – 2020M6.

Appendix: N-IW prior for MF-VAR

Let us write the model in (1) as follows:

$$Z = \underline{Z}B + U \tag{A.1}$$

where
$$Z = (Z_1, \ldots, Z_T)'$$
, $\underline{Z} = (\underline{Z}_1, \ldots, \underline{Z}_T)'$, with $\underline{Z}_t = (\underline{Z}'_{t-1}, \ldots, \underline{Z}'_{t-\ell}, 1')$, $U = (u_1, \ldots, u_t)'$ and $B = (A_1, \ldots, A_\ell, c)'$.

Normal-Inverse Wishart prior obtained by using artificial observations (Y_d, X_d) :

$$Z^* = \underline{Z}^* B + U^* \tag{A.2}$$

where $Z^* = (Z', Y'_d)'$ and $\underline{Z}^* = (\underline{Z}', X'_d)'$.

Appendix: Dummy observations for RHS variables

Dummy observations for lagged variables in MF-VAR are set as in Bańbura et al. (2010):

$$X_{d} = \begin{pmatrix} J_{P} \otimes diag(\sigma_{1,H}, \dots, \sigma_{m-1,H}, \sigma_{m,H}, \sigma_{L})/\lambda & \mathbf{0}_{\kappa_{P} \times 1} \\ \vdots & \vdots & \vdots \\ \mathbf{0}_{\kappa \times \kappa_{P}} & \mathbf{0}_{\kappa \times 1} \\ \vdots & \vdots & \vdots \\ \mathbf{0}_{1 \times \kappa_{P}} & \varepsilon \end{pmatrix}$$

$$(A.3)$$

where $J_p = \text{diag}(1, 2, ..., p)$, ε controls the prior for the intercept and $K = (Kh \times m) + KI$.

Appendix: Conditional posterior Back

 \triangleright Conditional posterior of the MF-VAR parameters (B, Σ):

$$\begin{split} B|\Sigma,Y &\sim \mathcal{N}\Big(B^*,\ \Sigma \otimes (\underline{Z}^{*'}\underline{Z}^*)^{-1}\Big) \\ \Sigma|B,Y &\sim \mathcal{IW}\Big(S^*,\ v^*\Big) \end{split} \tag{A.4}$$

with:

$$B^* = (\underline{Z}^{*'}\underline{Z}^*)^{-1}\underline{Z}^{*'}Z^*$$

$$S^* = (Z^* - \underline{Z}^*\tilde{B})'(Z^* - \underline{Z}^*\tilde{B})$$
(A.5)

where B^* is the OLS estimate of the augmented regression in (A.2) and \tilde{B} is a draw of the MF-VAR coefficients.

▶ Gibbs sampler to simulate the posterior distribution of the MF-VAR coefficients. 15000 iterations, using the last 5000 for inference.

Appendix: Convergence - MFVAR(3) (weekly VIX)

Figure A.2: 20th-order sample autocorrelation of the retained draws computed for the VAR parameters (intercepts and coefficients associated to lagged variables) (upper panel) and for the VAR covariances (lower panel).

Appendix: Convergence - MFVAR(3) (daily VIX)

Figure A.3: 20th-order sample autocorrelation of the retained draws computed for the VAR parameters (intercepts and coefficients associated to lagged variables) (upper panel) and for the VAR covariances (lower panel).

Appendix: Different number of lags

(a) Mixed-Frequency VAR with 6 lags.

(b) Mixed-Frequency VAR with 12 lags.

Figure A.4: Aggregated weekly responses. Median response (red line) with 68% (red shading) and 90% (gray shading) CI. IRFs from standard VAR(3) are reported (blue lines).

Appendix: Extended set of variables $\ I$

Figure A.5: Aggregated weekly responses. Median response (red line) with 68% (red shading) and 90% (gray shading) CI. IRFs from standard VAR(3) are reported (blue lines).

Appendix: Extended set of variables $\, \mathrm{I\hspace{-.1em}I} \,$

Figure A.6: Aggregated weekly responses. Median response (red line) with 68% (red shading) and 90% (gray shading) CI. IRFs from standard VAR(3) are reported (blue lines).

Appendix: VIX ordered last

Figure A.7: Aggregated weekly responses. Median response (red line) with 68% (red shading) and 90% (gray shading) CB. IRFs from standard VAR(3) are reported (blue lines).

Appendix: IRF weekly (including COVID-19)

Figure A.8: Aggregated weekly responses. Median response (red line) with 68% (red shading) and 90% (gray shading) CB. IRFs from standard VAR(3) are reported (blue lines).

Appendix: IRF daily (including COVID-19) I

Figure A.9: Median responses of macroeconomic variables.

Appendix: IRF daily (including COVID-19) ${ m II}$

Figure A.10: Aggregated daily responses. Median response (red line) with 68% (red shading) and 90% (gray shading) CB. IRFs from standard VAR(3) are reported (blue lines).

Appendix: IRF weekly (before Global Financial Crisis)

Figure A.11: Aggregated weekly responses. Median response (red line) with 68% (red shading) and 90% (gray shading) CB. IRFs from standard VAR(3) are reported (blue lines).

Different Priors

Figure A.12: Aggregated weekly responses. Median response (red line) with 68% (red shading) and 90% (gray shading) CB. IRFs from standard VAR(3) are reported (blue lines).

Different Priors

Figure A.13: Aggregated daily responses. Median response (red line) with 68% (red shading) and 90% (gray shading) CB. IRFs from standard VAR(3) are reported (blue lines).

Pre-Treatment Weekly

Figure A.14: Aggregated weekly responses. Median response (red line) with 68% (red shading) and 90% (gray shading) CB. IRFs from standard VAR(3) are reported (blue lines).

Pre-Treatment daily Back

Figure A.15: Aggregated daily responses. Median response (red line) with 68% (red shading) and 90% (gray shading) CB. IRFs from standard VAR(3) are reported (blue lines).

Pre-Treatment Daily

Figure A.16: Median responses of macroeconomic variables.