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Objectives

Statistical inference of jumps in nonparametric regression models
with long memory noise

Propose new test statistic for the presence of jumps
Propose new sequential applications of tests to estimate number
of jumps and their locations



Roadmap

Model

Motivation

Test statistic based wavelet variance

Testing for hypothesis of no jumps

Estimating number of jumps and their locations

Simulation Study + Daily Dow-Jones Industrial Average



Model (1)

Yi = f (i/n) + εi

Under H0 :
f (x) � fC (x),

where fC : [0, 1]! R, fC is continuously di¤erentiable
Under H1 :

f (x) � fC (x) + fJ (x) ,
where fJ (x) � ∑m0

l=1 dl Ifx � λlg m0 is the �nite number of
jumps, λl�s are jump locations, and dl�s are jump sizes



Model (2)

Recall
Yi = f (i/n) + εi

Autocorrelation of εi satis�es

corr (εi , εi 0) �
��i � i 0���2+2H , i � i 0 ! ∞,

for H 2 [0.5, 1)
H represents Hurst parameter:

When H = 0.5, εi is an independent Gaussian error
When H 2 (0.5, 1), εi has long-range dependence (or long
memory)



Motivation

Model is very general to allow for nonparametric regression
models with long memory noise

Existing approaches from Wang (1995, 1999) based on the
sup-type test statistic

However, under H0, Wang�s sup-type test statistic converges
very slowly to an extreme-value distribution

Solution: our test statistic is based on robust estimator of the
variance of the wavelet coe¢ cients, and converges faster to
normal distribution

Advantage in �nite sample:

Better size control for testing H0
Better precision of estimating m0 (number of jumps)



Wavelet Variance Estimation (1)

Discrete wavelet transformation of WA
j ,k at scale j 2 Z and

location k 2 Z :

WA
j ,k �

1
n

n

∑
i=1

ψj ,k

�
i
n

�
Ai ,

where

ψj ,k

�
i
n

�
� 2j/2ψ

�
k � 2j i

n

�
,

and ψ(t) is a wavelet function, that is,
R

ψ (t) dt = 0
Then

WY
j ,k = Wf

j ,k +W
BH
j ,k

Property of Wf
j ,k and W

BH
j ,k :

Wf
j ,k is spatially adaptive to pointwise smoothness of f (x)

W
BH
j ,k decorrelates the long-memory noise εi



Wavelet Variance Estimation (2)
Recall

WY
j ,k = Wf

j ,k +W
BH
j ,k

Under H0 : for all k,

WY
j ,k � W

BH
j ,k ,

where W
BH
j ,k is Gaussian

Under H1 : for locations k near jumps,

WY
j ,k � Wf

j ,k � W
fJ
j ,k ;

otherwise,
WY

j ,k � W
BH
j ,k ,

where W
BH
j ,k is Gaussian

Remark: Wang (1995, 1999) proposed the test statistic
supk2K

���WY
j ,k

��� where K � �1, � � � , 2j	 for the jump detection



Wavelet Variance Estimation (3)
Unlike Wang�s approach, our test statistic is based on the
second moment of wavelet coe¢ cients
We utilize the wavelet variance which measures the variability of
wavelet coe¢ cients
De�ne wavelet variance at a given scale j by

σ2j � Var
�

W
BH
j ,1

�
Two di¤erent estimators of wavelet variance σ2j :

Non-robust to W
fJ
j ,k :

bσ2j ,K � ∑k2K(W
Y
j ,k )

2

2j
;

Robust to W
fJ
j ,k :

eσ2j ,K �
"
medk2K

����� WY
j ,k

0.6745

�����
#2
.



Test Statistic for Hypothesis of No Jumps
Intuition: eσ2j ,K is a robust estimator of σ2j regardless of the presence

of jumps, and that bσ2j ,K is not robust to the presence of outliers
(Infeasible) test statistic:

Dj ,K �
bσ2j ,K � eσ2j ,Kp

ω
,

where ω � Var
 

∑2
j
k=1

�
W
BH
j ,k

�2
2j �

�
medk2f1,��� ,2jg

���� W
BH
j ,k

0.6745

�����2
!

(not depend on the presence of jumps)
Under H0 :

lim
n!∞

Pr [jDj ,Kj � Cγ] = γ;

Under H1 :
lim
n!∞

Pr [jDj ,Kj � Cγ] = 1,

where Cγ = Φ�1 �1� γ
2

�



Estimating Number of Jumps and Locations (1)
Sequential procedure based on Dj ,K :

Step 1 Conduct a test for H0 : m0 = 0 (no jump) against H1 : m0 > 0
(at least one jump). Reject H0 if

jDj ,Kj > Cγ,

where K �
�
1, � � � , 2j

	
. If H0 is not rejected, set bm = 0;

Step 2 If H0 : m0 = 0 is rejected in Step 1, conduct a test for H0 :
m0 = 1 (one jump) against H1 : m0 > 1 (at least two jumps).
Reject H0 if ���Dj ,KnbK1 ��� > Cγ,

where bK1 � nk : bk1 � k 2 supp(ψ)o
with bk1 � arg supk2K ���WY

j ,k

���. If H0 is not rejected, set bm = 1;



Estimating Number of Jumps and Locations (2)
Step 3 If H0 : m0 = 1 is rejected, conduct a test for H0 : m0 = 2 (two

jumps) against H1 : m0 > 2 (at least three jumps). Reject H0 if���Dj ,Kn(bK1[bK2)��� > Cγ,

where bK2 � nk : bk2 � k 2 supp(ψ)o
with bk2 � arg supk2KnbK1 ���WY

j ,k

���. If H0 is not rejected, setbm = 2;
Step 4 Repeat the step until H0 is not rejected, so that bm satis�es���Dj ,Kn[ bml=1 bKl ��� � Cγ,

where bKl � nk : bkl � k 2 supp(ψ)o
with bkl � arg supk2Kn[l�1l=1

bKl
���WY

j ,k

��� with l = 1, � � � , bm.



Estimating Number of Jumps and Locations (3)

Both estimated number of jumps and locations are consistent.
Hence we have

Pr (bm = m0) ! 1,bm0
∑
l=1

�bλl � λl

�2
= Op

�
2�2j

�
,

where bλl � bkl
2j
.



Feasible Test Statistic
Recall

Dj ,K �
bσ2j ,K � eσ2j ,Kp

ω

and

ω � Var

0B@∑2j
k=1

�
W

BH
j ,k

�2
2j

�
"
medk2f1,��� ,2jg

����� W
BH
j ,k
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�����
#21CA

Estimator bω :
Rewrite the estimation errors of bσ2j ,K and eσ2j ,K in terms of
sample average
Truncate the 100� (1� ε) percent of the largest

���WY
j ,k

��� to
construct the truncated version of sample averages
Apply Andrews (1991)�s long-run covariance estimationbDj ,K � bσ2j ,K�eσ2j ,Kpbω



Simulation Study: See Paper



Daily Dow-Jones Industrial Average: See Paper


