Inference of jumps using wavelet variance

Heng Chen (Bank of Canada) Mototsugu Shintani (University of Tokyo)

The views expressed in this paper are those of the author. No responsibility for them should be attributed to the Bank of Canada.

Statistical inference of jumps in nonparametric regression models with long memory noise

- Propose new test statistic for the presence of jumps
- Propose **new** sequential applications of tests to estimate number of jumps and their locations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Model
- Motivation
- Test statistic based wavelet variance
- Testing for hypothesis of no jumps
- Estimating number of jumps and their locations
- Simulation Study + Daily Dow-Jones Industrial Average

(日) (四) (코) (코) (코) (코)

$$Y_i = f(i/n) + \varepsilon_i$$

• Under H_0 :

$$f(x) \equiv f_C(x),$$

where $f_C : [0, 1] \rightarrow \mathbf{R}$, f_C is continuously differentiable • Under H_1 :

$$f(x) \equiv f_{\mathcal{C}}(x) + f_{\mathcal{J}}(x)$$
 ,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where $f_J(x) \equiv \sum_{l=1}^{m_0} d_l I\{x \ge \lambda_l\} m_0$ is the finite number of jumps, λ_l 's are jump locations, and d_l 's are jump sizes

Recall

$$Y_i = f(i/n) + \varepsilon_i$$

• Autocorrelation of ε_i satisfies

corr
$$(\varepsilon_i, \varepsilon_{i'}) \asymp |i - i'|^{-2+2H}$$
, $i - i' \to \infty$,

for $H \in [0.5, 1)$

- *H* represents Hurst parameter:
 - When H = 0.5, ε_i is an independent Gaussian error
 - When H ∈ (0.5, 1), ε_i has long-range dependence (or long memory)

- Model is very general to allow for nonparametric regression models with long memory noise
- Existing approaches from Wang (1995, 1999) based on the sup-type test statistic
- However, under *H*₀, Wang's sup-type test statistic converges very slowly to an extreme-value distribution
- **Solution**: our test statistic is based on robust estimator of the variance of the wavelet coefficients, and converges faster to normal distribution
- Advantage in finite sample:
 - Better size control for testing H_0
 - Better precision of estimating m_0 (number of jumps)

Wavelet Variance Estimation (1)

• Discrete wavelet transformation of $W_{j,k}^{\mathbf{A}}$ at scale $j \in Z$ and location $k \in Z$:

$$\mathbb{W}_{j,k}^{\mathbf{A}} \equiv \frac{1}{n} \sum_{i=1}^{n} \psi_{j,k} \left(\frac{i}{n}\right) A_{i},$$

where

$$\psi_{j,k}\left(\frac{i}{n}\right) \equiv 2^{j/2}\psi\left(k-2^{j}\frac{i}{n}\right),$$

and $\psi(t)$ is a wavelet function, that is, $\int \psi(t) dt = 0$ • Then

$$\mathbb{W}_{j,k}^{\mathbf{Y}} = \mathbb{W}_{j,k}^{\mathbf{f}} + \mathbb{W}_{j,k}^{\mathbf{B}_{H}}$$

- Property of $\mathbb{W}_{j,k}^{\mathbf{f}}$ and $\mathbb{W}_{j,k}^{\mathbf{B}_{H}}$:
 - W^f_{j,k} is spatially adaptive to pointwise smoothness of f (x)
 W^B_{i,k} decorrelates the long-memory noise ε_i

Wavelet Variance Estimation (2)

Recall

$$\mathbb{W}_{j,k}^{\mathsf{Y}} = \mathbb{W}_{j,k}^{\mathsf{f}} + \mathbb{W}_{j,k}^{\mathsf{B}_{H}}$$

• Under H_0 : for all k,

$$\mathbb{W}_{j,k}^{\mathbf{Y}} pprox \mathbb{W}_{j,k}^{\mathbf{B}_{H}}$$
 ,

where $\mathbb{W}_{i,k}^{\mathbf{B}_{H}}$ is Gaussian

• Under H_1 : for locations k near jumps,

$$\mathbb{W}_{j,k}^{\mathbf{Y}} \approx \mathbb{W}_{j,k}^{\mathbf{f}} \approx \mathbb{W}_{j,k}^{\mathbf{f}_{J}}$$

otherwise,

$$\mathbb{W}_{j,k}^{\mathbf{Y}} pprox \mathbb{W}_{j,k}^{\mathbf{B}_{H}}$$
 ,

where $\mathbb{W}_{j,k}^{\mathbf{B}_{H}}$ is Gaussian • **Remark**: Wang (1995, 1999) proposed the test statistic $\sup_{k \in \mathbf{K}} \left| \mathbb{W}_{j,k}^{\mathbf{Y}} \right|$ where $\mathbf{K} \equiv \{1, \cdots, 2^{j}\}$ for the jump detection

Wavelet Variance Estimation (3)

- Unlike Wang's approach, our test statistic is based on the second moment of wavelet coefficients
- We utilize the wavelet variance which measures the variability of wavelet coefficients
- Define wavelet variance at a given scale *j* by

$$\sigma_j^2 \equiv Var\left(\mathbb{W}_{j,1}^{\mathbf{B}_H}\right)$$

- Two different estimators of wavelet variance σ_i^2 :
 - Non-robust to $\mathbb{W}_{j,k}^{\mathbf{f}_{j}}$:

$$\widehat{\sigma}_{j,\mathbf{K}}^2 \equiv \frac{\sum_{k \in \mathbf{K}} (\mathbb{W}_{j,k}^{\mathbf{Y}})^2}{2^j};$$

• Robust to $\mathbb{W}_{j,k}^{\mathbf{f}_{j}}$:

$$\widetilde{\sigma}_{j,\mathbf{K}}^{2} \equiv \left[med_{k\in\mathbf{K}} \left| \frac{\mathbb{W}_{j,k}^{\mathbf{Y}}}{0.6745} \right| \right]^{2}.$$

Test Statistic for Hypothesis of No Jumps

Intuition: $\tilde{\sigma}_{j,\mathbf{K}}^2$ is a robust estimator of σ_j^2 regardless of the presence of jumps, and that $\hat{\sigma}_{j,\mathbf{K}}^2$ is not robust to the presence of outliers

• (Infeasible) test statistic:

$$D_{j,\mathbf{K}} \equiv \frac{\widehat{\sigma}_{j,\mathbf{K}}^{2} - \widetilde{\sigma}_{j,\mathbf{K}}^{2}}{\sqrt{\omega}},$$
where $\omega \equiv Var\left(\frac{\sum_{k=1}^{2^{j}} \left(\mathbb{W}_{j,k}^{\mathbf{B}_{H}}\right)^{2}}{2^{j}} - \left[med_{k\in\{1,\cdots,2^{j}\}} \left|\frac{\mathbb{W}_{j,k}^{\mathbf{B}_{H}}}{0.6745}\right|\right]^{2}\right)$
(not depend on the presence of jumps)
Under H_{0} :

$$\lim_{n\to\infty}\Pr\left[|D_{j,\mathbf{K}}|\geq C_{\gamma}\right]=\gamma;$$

• Under *H*₁ :

$$\lim_{n\to\infty}\Pr\left[|D_{j,\mathbf{K}}|\geq C_{\gamma}\right]=1,$$
 where $C_{\gamma}=\Phi^{-1}\left(1-\frac{\gamma}{2}\right)$

Estimating Number of Jumps and Locations (1)

Sequential procedure based on $D_{j,\mathbf{K}}$:

Step 1 Conduct a test for $H_0: m_0 = 0$ (no jump) against $H_1: m_0 > 0$ (at least one jump). Reject H_0 if

 $|D_{j,\mathbf{K}}| > C_{\gamma},$

where $\mathbf{K} \equiv \{1, \dots, 2^j\}$. If H_0 is not rejected, set $\hat{m} = 0$; Step 2 If $H_0 : m_0 = 0$ is rejected in Step 1, conduct a test for $H_0 : m_0 = 1$ (one jump) against $H_1 : m_0 > 1$ (at least two jumps). Reject H_0 if

$$\left|D_{j,\mathbf{K}\setminus\widehat{\mathbf{K}}_{1}}\right|>C_{\gamma},$$

where

$$\widehat{\mathbf{K}}_1 \equiv \left\{ k : \widehat{k}_1 - k \in \operatorname{supp}(\psi) \right\}$$

with $\hat{k}_1 \equiv \arg \sup_{k \in \mathbf{K}} \left| \mathbb{W}_{j,k}^{\mathbf{Y}} \right|$. If H_0 is not rejected, set $\hat{m} = 1$;

Estimating Number of Jumps and Locations (2)

Step 3 If $H_0: m_0 = 1$ is rejected, conduct a test for $H_0: m_0 = 2$ (two jumps) against $H_1: m_0 > 2$ (at least three jumps). Reject H_0 if

$$\left| D_{j,\mathbf{K}\setminus\left(\widehat{\mathbf{K}}_{1}\cup\widehat{\mathbf{K}}_{2}\right)} \right| > C_{\gamma},$$

where

$$\widehat{\mathbf{K}}_{2} \equiv \left\{ k : \widehat{k}_{2} - k \in \operatorname{supp}(\psi) \right\}$$
with $\widehat{k}_{2} \equiv \operatorname{arg\,sup}_{k \in \mathbf{K} \setminus \widehat{\mathbf{K}}_{1}} \left| \mathbb{W}_{j,k}^{\mathbf{Y}} \right|$. If H_{0} is not rejected, set $\widehat{m} = 2$;

Step 4 Repeat the step until H_0 is not rejected, so that \widehat{m} satisfies

$$\left| D_{j,\mathbf{K}\setminus\cup_{l=1}^{\widehat{m}}\widehat{\mathbf{K}}_{l}}
ight| \leq C_{\gamma},$$

where

$$\widehat{\mathbf{K}}_{l} \equiv \left\{ k : \widehat{k}_{l} - k \in \operatorname{supp}(\psi) \right\}$$

with $\widehat{k}_{l} \equiv \operatorname{arg\,sup}_{k \in \mathbf{K} \setminus \bigcup_{l=1}^{l-1} \widehat{\mathbf{K}}_{l}} \left| \mathbb{W}_{j,k}^{\mathbf{Y}} \right|$ with $l = 1, \dots, \widehat{m}$.

Both estimated number of jumps and locations are consistent. Hence we have

$$\Pr\left(\widehat{m} = m_0\right) \quad \to \quad 1, \\ \sum_{l=1}^{\widehat{m}_0} \left(\widehat{\lambda}_l - \lambda_l\right)^2 \quad = \quad O_p\left(2^{-2j}\right),$$

where

$$\widehat{\lambda}_I \equiv \frac{\widehat{k}_I}{2^j}.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Feasible Test Statistic

Recall

$$D_{j,\mathbf{K}} \equiv \frac{\widehat{\sigma}_{j,\mathbf{K}}^2 - \widetilde{\sigma}_{j,\mathbf{K}}^2}{\sqrt{\omega}}$$

and

$$\omega \equiv \operatorname{Var}\left(\frac{\sum_{k=1}^{2^{j}} \left(\mathbb{W}_{j,k}^{\mathbf{B}_{H}}\right)^{2}}{2^{j}} - \left[\operatorname{med}_{k \in \{1, \cdots, 2^{j}\}} \left|\frac{\mathbb{W}_{j,k}^{\mathbf{B}_{H}}}{0.6745}\right|\right]^{2}\right)$$

- Estimator $\widehat{\omega}$:
 - Rewrite the estimation errors of $\hat{\sigma}_{j,\mathbf{K}}^2$ and $\tilde{\sigma}_{j,\mathbf{K}}^2$ in terms of sample average
 - Truncate the $100 \times (1 \epsilon)$ percent of the largest $\left| \mathbb{W}_{j,k}^{\mathbf{Y}} \right|$ to construct the truncated version of sample averages
 - Apply Andrews (1991)'s long-run covariance estimation

•
$$\widehat{D}_{j,\mathbf{K}} \equiv \frac{\widehat{\sigma}_{j,\mathbf{K}}^2 - \widetilde{\sigma}_{j,\mathbf{K}}^2}{\sqrt{\widehat{\omega}}}$$

Simulation Study: See Paper

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Daily Dow-Jones Industrial Average: See Paper

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで