Expecting the unexpected: Economic growth under stress

Gloria González-Rivera

(University of California, Riverside)

Vladimir Rodríguez-Caballero

(ITAM, Mexico, and CREATES, Denmark)

Esther Ruiz

(Universidad Carlos III de Madrid)

2021 NBER Time Series Conference. Rice University

Contribution

A new measure of economic growth vulnerability Growth in Stress (GiS)

- Vulnerability refers to the exposure of the economy to stressful, rare, and catastrophic shocks, e.g., COVID-19
- Measuring vulnerability is important for the construction of resilience policies.
- Policy makers should be prepared in advance for extreme shocks and ready to implement corrective measures.

Definition of Growth-in-Stress (GiS)

 $GiS_{t+h} = \min q_{\tau}(y_{t+h|t})$ s.t. $g(F_t, \alpha) = 0$

• Factor-augmented τ -quantile regression as a function of latent (unobservable) factors F_{it} : (typically τ = 5%) r

$$q_{\tau}(y_{t+h|t}) = \mu_{\tau}^{(h)} + \phi_{\tau}^{(h)}y_t + \sum_{i=1}^{\prime} \beta_{\tau,i}^{(h)}F_{it} + v_{\tau,t+h}$$

 F_{it} extracted from a set of N variables, X_t .

• Multivariate probability density function of latent factors F_{it} :

 $g(F_t, \alpha)$ is a the centered α -probability contour of F_{it} , (e.g., ellipsoid containing the true factor vector with probability α)

 α selects the probabilistic stress scenarios (rare events) (e.g. 95%-probability contour of F_{it})

Graphical Representation of Growth-in-Stress (GiS) – 2 factor case

US Growth-in-Stress (GiS)

• Extraction of Factors from the following data sets: (quarterly data from 2005Q1 to 2020Q2)

 X_1 : Local financial variables, $N_1 = 105$

(same variables as those used to construct Chicago Fed's Financial Conditions Index, NFCI, as in Adrian, Boyarchenko and Giannone, 2019, AER)

 X_2 : Global financial variables, $N_2 = 208$ (Arregui et al., 2018, WP)

 X_3 : Local macroeconomic variables, $N_3 = 248$ (McCracken and Ng, 2016, *JBES*)

 X_4 : Global macroeconomic variables, $N_4 = 63$ (González-Rivera, Maldonado and Ruiz, 2019, IJF)

Extraction of Factors based on Multi-level Dynamic Factor Model : 5 factor model selected

$$\begin{bmatrix} X_{2t} \\ X_{3t} \\ X_{4t} \end{bmatrix} = \begin{bmatrix} \lambda_{11} & \lambda_{12} & \lambda_{13} & 0 & 0 \\ \lambda_{21} & 0 & 0 & \lambda_{24} & 0 \\ \lambda_{31} & \lambda_{32} & 0 & 0 & \lambda_{35} \end{bmatrix} \begin{bmatrix} F_{1t} \\ F_{2t} \\ F_{3t} \\ F_{4t} \\ F_{5t} \end{bmatrix} + \begin{bmatrix} \varepsilon_{2t} \\ \varepsilon_{3t} \\ \varepsilon_{4t} \end{bmatrix}$$

 F_{1t} is a pervasive factor that loads on all variables in the system F_{2t} is a semi-pervasive factor that loads on world (global financial and macro) variables F_{3t} (global financial), F_{4t} (local macro) and F_{5t} (global macro) are non-pervasive factors.

Note: The local financial factor extracted from X_1 , NFCI, is not relevant once all other variables are considered.

Factor-augmented Quantile Regression (one-step-ahead)

$$q_{\tau}(y_{t+1|t}) = \mu_{\tau} + \phi_{\tau} y_{t} + \sum_{i=1}^{5} \beta_{\tau,i} F_{it} + v_{\tau,t+1}$$

	au = 0.05	au=0.5	au = 0.95
μ	-2.62 (0.00)	2.04 (0.00)	4.33 (0.00)
φ	0 . 15 (0.00)	-0.19 (0.37)	-0.24 (0.01)
β_1	0.68 (0.00)	0.45 (0.38)	1.30 (0.00)
β_2	2.19 (0.01)	-0.01 (0.99)	0.62 (0.00)
β_3	- 1 . 20 (0.01)	- 0.87 (0.03)	-1.06 (0.00)
eta_4	-1.21 (0.03)	0.48 (0.29)	0.23 (0.21)
β_5	3.44 (0.00)	0.58 (0.19)	- 0 . 59 (0.00)
R^1	0.49	0.16	0.36

US Growth-in-Stress (GiS): Results

US Growth-in-Stress (GiS): Policy Tools

Growth densities (ML-DFM) with factors centered at their means

Growth densities (ML-DFM) with stressed factors at 95% level

By choosing different levels of stress, GiS helps policy makers to deal with the trade-off between building greater resilience in normal times and reducing downside risk in highly stressed periods.

Final Thought

To expect the unexpected shows a thoroughly modern intellect.

— Oscar Wilde —

AZQUOTES