
LATEX TikZposter

A bootstrap assisted second order stationarity test for nonlinear time series

Lei Jin† and Suojin Wang‡

†Department of Mathematics and Statistics, Texas A&M University - Corpus Christi ‡Department of Statistics, Texas A&M University

A bootstrap assisted second order stationarity test for nonlinear time series

Lei Jin† and Suojin Wang‡

†Department of Mathematics and Statistics, Texas A&M University - Corpus Christi ‡Department of Statistics, Texas A&M University

Motivation

While many tests of second order stationarity have been developed for
linear or Gaussian time series, time series are often nonlinear and non-
Gaussian in many econometrics and finance applications. A bootstrap
assisted test is proposed to check the second order stationarity of non-
linear time series.
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Fig. 1: SP 500 log return

Locally stationary nonlinear processes

Let {εt}t∈Z be a sequence of i.i.d. random variables with mean zero and
Ft = (εt, εt−1, . . . ). A mean zero locally stationary process of [1] is

Xt = Xt,T = Ht,T (Ft),
where Ht,T is a measurable function, for each t = 1, 2, · · · , T , and T is
the length.
The local autocovariance function at lag h is

γh(u) = Cov(Yt−h(u), Yt(u)) for u ∈ [0, 1],

where {Yt(u)} is the stationary approximation process for {Xt,T} for
each u ∈ [0, 1].
The null hypothesis:

H0 : γh(u) = ch,

for all u ∈ [0, 1], h = 0, 1, . . . a.s. A sequence of local alternatives:

Ha,T : γh(u) = ch + lTgh(u), h = 0, 1, . . . ,

where lT → 0 at some appropriate rate and
∫ 1

0 g
2
h(u)du > 0 at some lag

h. If lT = 1, it is a fixed alternative Ha.

Walsh transformation

The k-th Walsh ordinate at lag h:

d̂
(k)
h =

1

T

T−h∑
t=1

XtXt+hWk

(
t− 1

T

)
,

where Wk(x) is the k-th Walsh function in x ∈ [0, 1].
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Fig. 2: Walsh functions

Theorem 1: Under some regularity assumptions and the stationarity, for integers
R = O(log(T )/log(log(T ))) and K = O(T 1/3), we have

sup
k=1,2,...,K,x∈ΩR

∣∣∣P (T 1/2d̂
(k)

R ≤ x)− P{(g1, . . . , gR)T ≤ x}
∣∣∣→ 0,

as T → ∞, where d̂
(k)

R = (d̂
(k)
0 , d̂

(k)
1 , . . . , d̂

(k)
R−1)

T, ΩR is the space of R dimen-
sional vector of real numbers and {gi}i≥1 is a mean zero Gaussian process with
cov(gi, gj) = Σi,j = limT→∞ TCov(γ̂i−1, γ̂j−1).

The Bootstrap covariance matrix estimate and the

test statistic

A covariance matrix estimate Σ̂R is obtained via BOB bootstrap ([2]) with block
size b to estimate Σr =

√
T (γ̂0, γ̂1, . . . , γ̂r−1)

T.
Theorem 2: Under Assumptions in Theorem 1, and b = o(T 0.5), we have

|Σ̂R −ΣR|∞→ 0

in probability, as T → ∞, where | · |∞ is the maximum norm defined to be the
maximum absolute value among all elements of the matrix.

Following [3], the test statistic:

ŜR,K = max
1≤k≤K

[
max

1≤r≤R
({d̃(k)

r }T{d̃
(k)

r } − 2r)− 2
√
k − 1

]
,

where d̃
(k)

R = P̂Rd̂
(k1)

R , and P̂RP̂
T

R = Σ̂
−1

R .

Asymptotic results

Theorem 3: Under Assumptions of Theorem 2,

ŜR,K → sup
k≥1

[
sup
r≥1

(

r∑
i=1

e2
k,i − 2r)− 2

√
k − 1

]
in distribution as T → ∞, where ek,i, k, i = 1, 2, . . . , are mutually
independent standard normal random variables.
Theorem 4: For integers R = O(logT/log(log(T ))), K = O(T 1/3),
b = o(T 0.5), and with some regularity conditions for locally stationary
processes,

ŜR,K →∞
in probability as T → ∞, under a fixed alternative or a sequence of
local alternatives with lTT

1/2 →∞.

Simulation study

Nonlinear time series:

�Model S6: Xt = σtZt, where σ2
t = 1.0 + 0.4X2

t−1 + 0.3X2
t−2;

�Model S7: Xt = 0.3Xt−1 + 0.6Xt−1Zt−1 + Zt;

�Model S8: Xt = σtZt, where σ2
t = 1.0 + 0.2X2

t−1 + 0.4σ2
t−1.

T = 256, Rejection rates in percentage

Statistics ŜR,K, cb = 3 JWW of [3] Nason’s test in [4]

α 0.1 0.05 0.1 0.05 0.1 0.05

S6 9.0 4.7 40.4 28.6 50.5 37.3

S7 5.5 3.6 30.4 23.9 56.3 42.4

S8 9.1 6.0 40.1 27.9 36.7 23.3
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