Motivation

While many tests of second order stationarity have been developed for linear or Gaussian time series, time series are often nonlinear and non-Gaussian in many econometrics and finance applications. A bootstrap assisted test is proposed to check the second order stationarity of nonlinear time series.

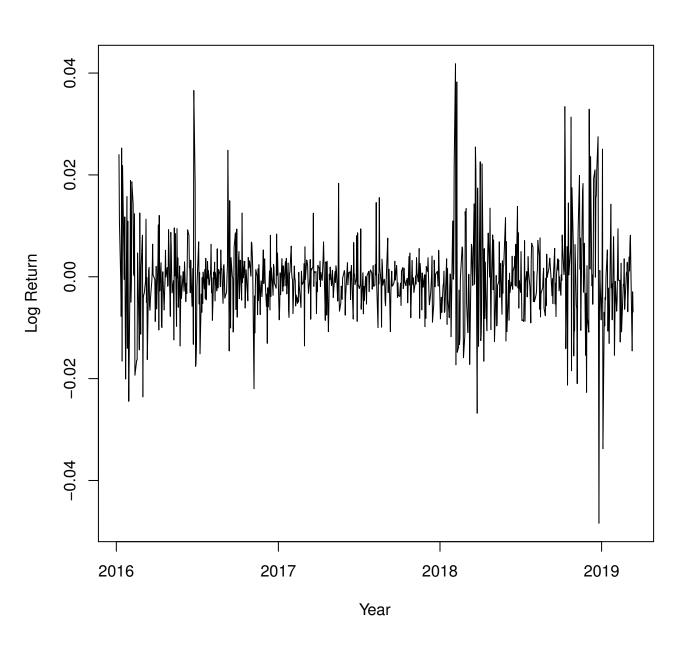


Fig. 1: SP 500 log return

Locally stationary nonlinear process

Let $\{\epsilon_t\}_{t\in\mathbb{Z}}$ be a sequence of i.i.d. random variables with mean zero and $\mathcal{F}_t = (\epsilon_t, \epsilon_{t-1}, \dots)$. A mean zero locally stationary process of [1] is

$$X_t = X_{t,T} = H_{t,T}(\mathcal{F}_t),$$

where $H_{t,T}$ is a measurable function, for each $t = 1, 2, \dots, T$, and T is the length.

The local autocovariance function at lag h is

 $\gamma_h(u) = \text{Cov}(Y_{t-h}(u), Y_t(u)) \text{ for } u \in [0, 1],$

where $\{Y_t(u)\}\$ is the stationary approximation process for $\{X_{t,T}\}\$ for each $u \in [0, 1]$.

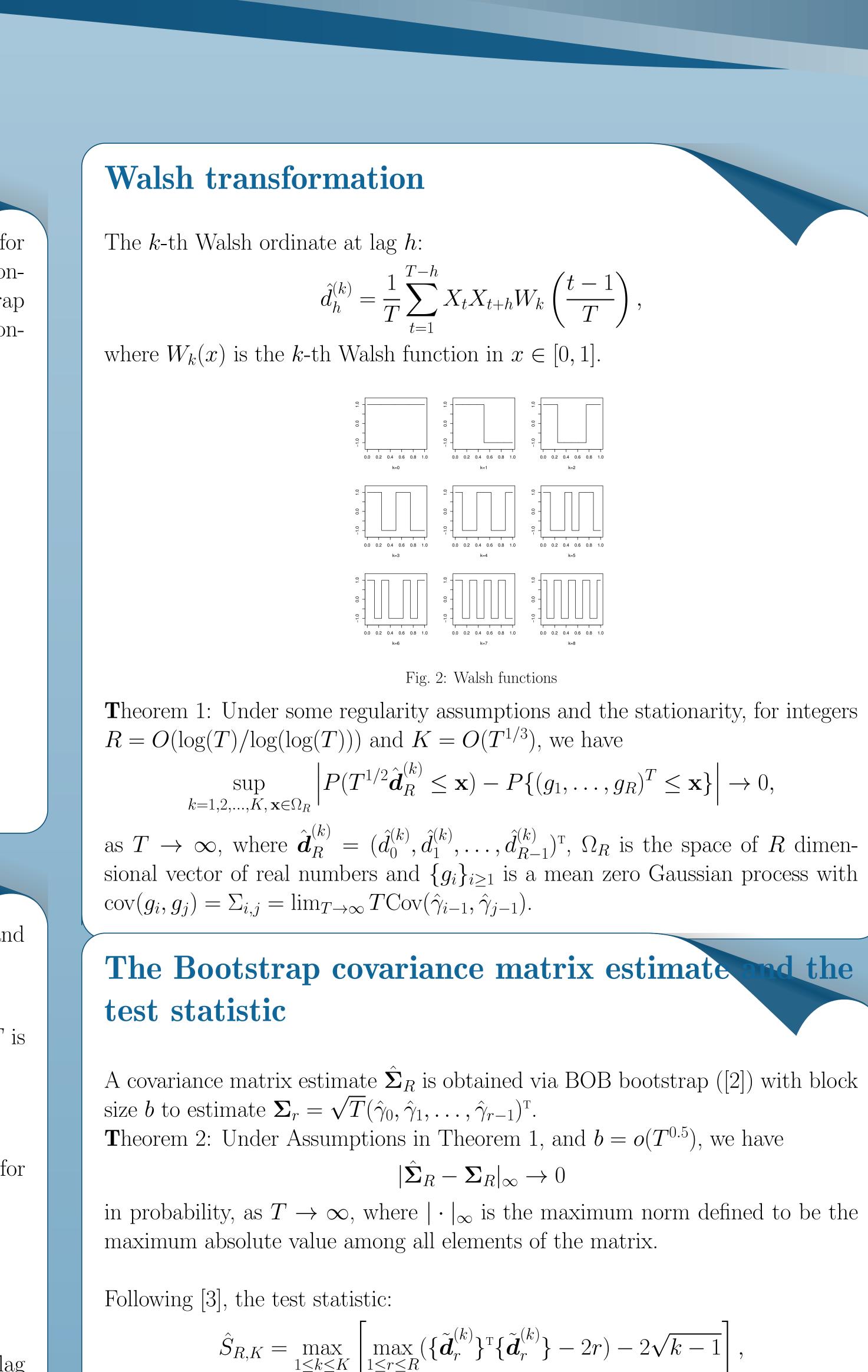
$$H_0: \gamma_h(u) = c_h,$$

for all $u \in [0, 1]$, $h = 0, 1, \ldots$ a.s. A sequence of local alternatives: $H_{a,T}: \gamma_h(u) = c_h + l_T g_h(u), \ h = 0, 1, \dots,$

where $l_T \to 0$ at some appropriate rate and $\int_0^1 g_h^2(u) du > 0$ at some lag h. If $l_T = 1$, it is a fixed alternative H_a .

A bootstrap assisted second order stationarity test for nonlinear time series Lei Jin[†] and Suojin Wang[‡]

[†]Department of Mathematics and Statistics, Texas A&M University - Corpus Christi [‡]Department of Statistics, Texas A&M University



where $\tilde{\boldsymbol{d}}_{R}^{(k)} = \hat{\boldsymbol{P}}_{R}\hat{\boldsymbol{d}}_{R}^{(k_{1})}$, and $\hat{\boldsymbol{P}}_{R}\hat{\boldsymbol{P}}_{R}^{\mathrm{T}} = \hat{\boldsymbol{\Sigma}}_{R}^{-1}$.

Asymptotic results

Theorem 3: Under Assumptions of Theorem 2,

$$g_{R,K} \to \sup_{k \ge 1} \left[\sup_{r \ge 1} \left(\sum_{i=1}^r e_{k,i}^2 - 2r \right) - 2\sqrt{r} \right]$$

in distribution as $T \to \infty$, where $e_{k,i}, k, i = 1, 2, \ldots$, are mutually independent standard normal random variables. **T**heorem 4: For integers $R = O(\log T / \log(\log(T))), K = O(T^{1/3}),$ $b = o(T^{0.5})$, and with some regularity conditions for locally stationary processes,

 $\hat{S}_{R,K} \to \infty$

in probability as $T \to \infty$, under a fixed alternative or a sequence of local alternatives with $l_T T^{1/2} \to \infty$.

Simulation study

Nonlinear time series:

- Model S6: $X_t = \sigma_t Z_t$, where $\sigma_t^2 = 1.0 + 0.4X_{t-1}^2 + 0.3X_{t-2}^2$;
- Model S7: $X_t = 0.3X_{t-1} + 0.6X_{t-1}Z_{t-1} + Z_t;$
- Model S8: $X_t = \sigma_t Z_t$, where $\sigma_t^2 = 1.0 + 0.2X_{t-1}^2 + 0.4\sigma_{t-1}^2$.

T = 256, Rejection rates in pe					
Statistics	$\hat{S}_{R,K},$	$c_b = 3$	JWW	of [3]	Nason's
α	0.1	0.05	0.1	0.05	0.1
S6	9.0	4.7	40.4	28.6	50.5
S7	5.5	3.6	30.4	23.9	56.3
S8	9.1	6.0	40.1	27.9	36.7

References

- [1] R. Dahlhaus, S. Richter, and W. B. Wu. "Towards a general theory for nonlinear locally stationary processes". In: Bernoulli 25 (2019), pp. 1013–1044.
- [2] D. N. Politis and J. P. Romano. "A general resampling scheme for triangular arrays" of α -mixing random variables with application to the problem of spectral density estimation". In: Annals of Statistics 20 (1992), pp. 1985–2007.
- [3] L. Jin, S. Wang, and H. Wang. "A new non-parametric stationarity test of time series in the time domain". In: Journal of the Royal Statistical Society, Series *B* 77 (2015), pp. 893–922.
- [4] G. Nason. "A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series". In: Journal of the Royal Statistical Society, Series B 75 (2013), pp. 879–904.

$$| \rightarrow 0$$

ercentage 's test in [4]0.0537.3 42.4 23.3